A088951 Number of distinct square-subwords in ternary representation of n.
0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1
Offset: 0
Keywords
Examples
n=125: a(125)=2 because 125 -> '11122' has 3 square-subwords: 11, 11 and 22 (11---, -11-- and ---22) and two of them are distinct.
Links
- Eric Weisstein's World of Mathematics, Squarefree Word
Crossrefs
Cf. A007089.
Comments