A088962 Values of n that generate Generalized Gaussian-Mersenne primes (see below).
2, 3, 4, 5, 7, 9, 10, 11, 12, 14, 15, 18, 19, 21, 22, 26, 27, 29, 30, 33, 34, 35, 42, 45, 47, 49, 51, 54, 55, 58, 63, 65, 66, 69, 70, 73, 79, 85, 86, 87, 105, 106, 110, 111, 113, 114, 126, 129, 138, 147, 151, 157, 163, 167, 178, 186, 189, 217, 231, 239, 241, 242, 283
Offset: 1
Keywords
Links
- M. Chamberland, Binary BBP-Formulae for Logarithms and Generalized Gaussian-Mersenne Primes, Journal of Integer Sequences, v.6 (2003), article 03.3.7, 1-10.
Programs
-
Mathematica
t = {}; Do[s = FullSimplify[Exp[2 Re[Log [Cyclotomic[n, (1 + I)/2]]]]]; If[PrimeQ[Numerator[s]], AppendTo[t, n]], {n, 100}]; t (* T. D. Noe, May 02 2012 *)
Formula
The numerator of the rational expression exp(2*Re(log(Phi_n((1+i)/2)))) is prime, where Phi_n is the n-th cyclotomic polynomial.