A088975 Breadth-first traversal of the Collatz tree, with the odd child of each node traversed prior to its even child. If the Collatz 3n+1 conjecture is true, this is a permutation of all positive integers.
1, 2, 4, 8, 16, 5, 32, 10, 64, 3, 20, 21, 128, 6, 40, 42, 256, 12, 13, 80, 84, 85, 512, 24, 26, 160, 168, 170, 1024, 48, 52, 53, 320, 336, 340, 341, 2048, 96, 17, 104, 106, 640, 672, 113, 680, 682, 4096, 192, 34, 208, 35, 212, 213, 1280, 1344, 226, 1360, 227, 1364
Offset: 0
Examples
From _Wolfdieter Lang_, Nov 26 2013: (Start) At the start of table CT the 4 (mod 6) vertex labels CT(l,k) with l >= 4 and out-edges L and R have been put into brackets. The other labels have out-degree 1 with edge label V). A bar separates the left and right subtree originating at vertex 16. l\k 1 2 3 4 5 6 7 8 9 10 ... 0: 1 1: 2 2: 4 3: 8 4: (16) 5: 5 | 32 6: (10)|(64) 7: 3 20 | 21 128 8: 6 (40)| 42 (256) 9: 12 13 80 | 84 85 512 10: 24 26 (160) | 168 170 (1024) 11: 48 (52) 53 320 | 336 (340) 341 2048 12: 96 17 104 (106) (640) | 672 113 680 (682) (4096) ... l=13: 192 (34) (208) 35 212 213 1280 | 1344 (226) (1360) 227 1364 1365 8192. l=14: 384 11 68 69 416 (70) (424) 426 (2560) | 2688 75 452 453 2720 (454) (2728) 2730 (16384). l=15: 768 (22) (136) 138 (832) 23 140 141 848 852 853 5120 | 5376 150 (904) 906 (5440) 151 908 909 5456 5460 5461 32768. At level l=15 the left-right 4 (mod 6) structure becomes for the first time asymmetric. This leads at the next level l=16 to the number of vertices 12+3 | 12+2 = 15|14 in total 29 (odd), breaking the left-right branch symmetry. The alternative Collatz tree, mentioned in a comment above, starts (here the vertex labeled 2 has now out-degree 0): l\k 1 2 3 4 5 6 7 8 ... 0: (4) 1: 1 8 2: 2 (16) 3: 5 32 4: (10) (64) 5: 3 20 21 128 6: 6 (40) 42 (256) 7: 12 13 80 84 85 512 8: 24 26 (160) 168 170 (1024) 9: 48 (52) 53 320 336 (340) 341 2048 ... (End)
Links
- T. D. Noe, Table of n, a(n) for n = 0..3517
Crossrefs
Programs
Extensions
Keyword tabf, notation CT(l,k) and two crossrefs added by Wolfdieter Lang, Nov 26 2013
Comments