A088986 Numbers k such that each of k through k+4 are divisible by exactly two primes.
54, 91, 92, 115, 141, 142, 143, 144, 158, 205, 212, 213, 214, 215, 295, 301, 323, 324, 325, 391, 535, 685, 721, 799, 1135, 1345, 1465, 1535, 1711, 1941, 1981, 2101, 2215, 2302, 2303, 2304, 2425, 2641, 3865, 4411, 5461, 6505, 6625, 6925, 7165, 7231, 7261
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..750 from Harvey P. Dale)
Programs
-
Mathematica
Transpose[Select[Partition[Transpose[Select[Table[{n,PrimeNu[n]},{n,10000}],Last[#]==2&]][[1]],5,1],Last[#]-First[#]==4&]][[1]] (* Harvey P. Dale, Oct 20 2011 *)
-
PARI
lista(kmax) = {my(q = vector(5)); for(k = 6, kmax, q = concat(vecextract(q, "^1"), omega(k) == 2); if(vecmin(q) == 1, print1(k-4, ", ")));} \\ Amiram Eldar, Jul 11 2024
-
Python
from sympy import primefactors def ok(n): return all(len(primefactors(n + i))==2 for i in range(5)) print([n for n in range(1, 8001) if ok(n)]) # Indranil Ghosh, Jul 17 2017
Comments