A088935 Numbers n such that leading digits of 2^n and 5^n are equal.
0, 5, 15, 78, 88, 98, 108, 118, 181, 191, 201, 211, 274, 284, 294, 304, 367, 377, 387, 397, 407, 470, 480, 490, 500, 563, 573, 583, 593, 603, 666, 676, 686, 696, 759, 769, 779, 789, 852, 862, 872, 882, 892, 955, 965, 975, 985, 1048, 1058, 1068, 1078, 1088
Offset: 1
Examples
78 is in the sequence since 2^78 = 302231454903657293676544 and 5^78 = 3308722450212110699485634768279851414263248443603515625 98 is in the sequence since 2^98 = 316912650057057350374175801344 and 5^98 = 315544362088404722164691426113114491869282574043609201908111572265625.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
- T. Sillke, Powers of 2 and 5 Puzzle
Crossrefs
Cf. A088995.
Programs
-
Maple
filter:= n -> convert(2^n,base,10)[-1]=convert(5^n,base,10)[-1]: select(filter, [$0..1000]); # Robert Israel, Aug 09 2018
-
Mathematica
Select[ Range[ 1000 ], IntegerDigits[ 2^# ][ [ 1 ] ] == IntegerDigits[ 5^# ][ [ 1 ] ] & ]
-
PARI
is(n)=(digits(2^n)[1]==digits(5^n)[1]); for(n=0,10^3,if(is(n),print1(n,", "))); \\ Joerg Arndt, Aug 10 2018
-
Python
def ok(n): return str(2**n)[0] == str(5**n)[0] print([k for k in range(1100) if ok(k)]) # Michael S. Branicky, Nov 03 2022
Extensions
Edited by Robert G. Wilson v, Dec 02 2003
Comments