A089005 Number of partitions of n-set with at least one even block.
0, 1, 3, 10, 40, 166, 749, 3683, 19275, 107806, 640970, 4024912, 26653653, 185401581, 1350624721, 10282222002, 81592209580, 673535269054, 5773214891137, 51291776763863, 471617190143567, 4481375500319334, 43947651280912186, 444258975094335440
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..500
Programs
-
Maple
with(combinat): b:= proc(n, i, t) option remember; `if`(n=0, t, `if`(i<1, 0, add(multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1, max(t, `if`(j=0, 0, 1-irem(i, 2)))), j=0..n/i))) end: a:= n-> b(n$2, 0): seq(a(n), n=1..30);
-
Mathematica
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, t_] := b[n, i, t] = If[n == 0, t, If[i<1, 0, Sum[multinomial[n, {n - i j} ~Join~ Table[i, {j}]]/j! b[n - i j, i - 1, Max[t, If[j == 0, 0, 1 - Mod[i, 2]]]], {j, 0, n/i}]]]; a[n_] := b[n, n, 0]; Array[a, 30] (* Jean-François Alcover, Nov 18 2020, after Maple *)
-
PARI
my(x='x+O('x^30)); concat(0, Vec(serlaplace(exp(sinh(x))*(exp(cosh(x)-1)-1))))
Formula
E.g.f.: exp(sinh(x))*(exp(cosh(x)-1)-1).