A089067 a(n) = 2*a(n-1) + (-1)^n*a(floor(n/2)); a(1)=1.
1, 3, 5, 13, 23, 51, 97, 207, 401, 825, 1627, 3305, 6559, 13215, 26333, 52873, 105539, 211479, 422557, 845939, 1691053, 3383733, 6765839, 13534983, 27066661, 54139881, 108273203, 216559621, 433106027, 866238387, 1732450441, 3464953755, 6929854637, 13859814813
Offset: 1
Examples
a(2) = 2*1 + 1 = 3; a(3) = 2*3 - 1 = 5; a(4) = 2*5 + 3 = 13; a(5) = 2*13 - 3 = 23; a(6) = 2*23 + 5 = 51; a(7) = 2*51 - 5 = 97; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A011782.
Programs
-
PARI
seq(n)={my(a=vector(n)); a[1]=1; for(n=2, n, a[n] = 2*a[n-1] + (-1)^n*a[floor(n/2)]); a} \\ Andrew Howroyd, Jun 05 2021
Formula
Lim_{n->infinity} a(n)/2^n = 0.8067474....
G.f. A(x) satisfies (1 + A(x))/(1 + A(x^2)) = (1-x)/(1-2*x). - Gary W. Adamson, Feb 18 2010, edited by Andrew Howroyd, Jun 05 2021
Extensions
a(31) corrected and terms a(32) and beyond from Andrew Howroyd, Jun 05 2021