cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089073 Number of symmetric non-crossing connected graphs on n equidistant nodes on a circle.

Original entry on oeis.org

1, 1, 2, 5, 10, 32, 64, 231, 462, 1792, 3584, 14586, 29172, 122880, 245760, 1062347, 2124694, 9371648, 18743296, 84021990, 168043980, 763363328, 1526726656, 7012604550, 14025209100, 65028489216, 130056978432, 607892634420
Offset: 1

Views

Author

Emeric Deutsch, Dec 04 2003

Keywords

Comments

Number of symmetric non-crossing connected graphs on n equidistant nodes on a circle (it is assumed that the axis of symmetry is a diameter of the circle passing through a given node).

Examples

			a(4)=5 because on the nodes A,B,C,D (axis of symmetry through A) the only symmetric non-crossing connected graphs are (AB,AC,AD), (AC,BC,DC), (AB,BC,CD,DA), (AB,BC,CD,DA,BD), (AB,BC,CD,DA,AC).
		

Crossrefs

Cf. A078531.

Programs

  • Maple
    a := proc(n) if n mod 2 = 0 then 4^(n/2)*binomial((3*(n/2)-1)/2,n/2)/2/(n/2+1) else 2*4^((n-1)/2)*binomial((3*((n-1)/2)-1)/2,(n-1)/2)/2/((n-1)/2+1) fi end; seq(a(n), n=1..30);
  • Mathematica
    a[n_] := If[EvenQ[n], 2^n Binomial[(3n-2)/4, n/2]/(n+2), 2^n Binomial[ (3n-5)/4, (n-1)/2]/(n+1)];
    Array[a, 28] (* Jean-François Alcover, Jul 29 2018 *)

Formula

a(2k) = 4^k*binomial((3k-1)/2, k)/[2(k+1)], a(2k+1) = 2a(2k).
a(2k) = (1/2)A078531(k), a(2k+1) = A078531(k).
Conjecture D-finite with recurrence n*(n+2)*(23*n^2-162*n+199) *a(n) +12*(27*n^2-47*n-10) *a(n-1) +24*(-27*n^2+47*n+10) *a(n-2) +48 *(27*n^2-47*n-10) *a(n-3) -12*(3*n-13)*(3*n-5)*(23*n^2-116*n+60) *a(n-4)=0. - R. J. Mathar, Jul 22 2022

Extensions

Name edited by Michel Marcus, Jul 30 2018