A089088 a(0) = 1, a(1) = 2; for n > 1, a(n) = smallest positive number not already in sequence which has GCD > 1 with some earlier term.
1, 2, 4, 6, 3, 8, 9, 10, 5, 12, 14, 7, 15, 16, 18, 20, 21, 22, 11, 24, 25, 26, 13, 27, 28, 30, 32, 33, 34, 17, 35, 36, 38, 19, 39, 40, 42, 44, 45, 46, 23, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 29, 60, 62, 31, 63, 64, 65, 66, 68, 69, 70, 72, 74, 37, 75, 76, 77, 78, 80, 81, 82, 41, 84, 85, 86, 43, 87, 88, 90, 91, 92, 93, 94, 47, 95, 96, 98, 99
Offset: 0
Links
Programs
-
Haskell
import Data.List (delete) a089088 n = a089088_list !! n a089088_list = 1 : 2 : f [3..] [1,2] where f xs ys = y : f (delete y xs) (y : ys) where y = head $ filter (\z -> any (> 1) $ map (gcd z) ys) xs -- Reinhard Zumkeller, Feb 27 2013
-
Mathematica
A089088 = {a[0] = 1, a[1] = 2}; a[n_] := Catch[For[k = Min[ Complement[ Range[Max[A089088] + 1], A089088]], True, k++, If[ !MemberQ[A089088, k] && Or @@ (GCD[k, #] > 1&) /@ A089088, AppendTo[A089088, k]; Throw[k]]]]; Table[a[n], {n, 0, 88}] (* Jean-François Alcover, Jul 18 2012 *) Nest[Append[#1, Block[{k = 1}, While[Nand[FreeQ[#1, k], AnyTrue[#1, ! CoprimeQ[#, k] &]], k++]; k]] &, {1, 2}, 87] (* Michael De Vlieger, Nov 18 2017 *)
Extensions
More terms from Victoria A Sapko (vsapko(AT)canes.gsw.edu), Jun 16 2004
Comments