cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089177 Triangle read by rows: T(n,k) (n >= 0, 0 <= k <= 1+log_2(floor(n))) giving number of non-squashing partitions of n into k parts.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 4, 4, 1, 1, 5, 6, 2, 1, 6, 9, 4, 1, 7, 12, 6, 1, 8, 16, 10, 1, 1, 9, 20, 14, 2, 1, 10, 25, 20, 4, 1, 11, 30, 26, 6, 1, 12, 36, 35, 10, 1, 13, 42, 44, 14, 1, 14, 49, 56, 20, 1, 15, 56, 68, 26, 1, 16, 64, 84, 36, 1, 1, 17, 72, 100, 46, 2, 1, 18, 81, 120, 60, 4, 1
Offset: 0

Views

Author

N. J. A. Sloane, Dec 08 2003

Keywords

Comments

T(n,k) = A181322(n,k) - A181322(n,k-1) for n>0. - Alois P. Heinz, Jan 25 2014

Examples

			Triangle begins:
  1;
  1, 1;
  1, 2,  1;
  1, 3,  2;
  1, 4,  4,  1;
  1, 5,  6,  2;
  1, 6,  9,  4;
  1, 7, 12,  6;
  1, 8, 16, 10,  1;
		

Crossrefs

Cf. A078121, A089178. Columns give A002620, A008804, A088932, A088954. Row sums give A000123.

Programs

  • Maple
    T:= proc(n) option remember;
         `if`(n=0, 1, zip((x, y)-> x+y, [T(n-1)], [0, T(floor(n/2))], 0)[])
        end:
    seq(T(n), n=0..25);  # Alois P. Heinz, Apr 01 2012
  • Mathematica
    row[0] = {1}; row[1] = {1, 1}; row[n_] := row[n] = Plus @@ PadRight[ {row[n-1], Join[{0}, row[Floor[n/2]]]} ]; Table[row[n], {n, 0, 25}] // Flatten (* Jean-François Alcover, Jan 31 2014 *)

Formula

Row 0 = {1}, row 1 = {1 1}; for n >=2, row n = row n-1 + (row floor(n/2) shifted one place right).
G.f. for column k (k >= 2): x^(2^(k-2))/((1-x)*Product_{j=0..k-2} (1-x^(2^j))). [corrected by Jason Yuen, Jan 12 2025]
Conjecture: let R(n,x) be the n-th reversed row polynomial, then R(n,x) = Sum_{k=0..A000523(A053645(n)) + 1} T(A053645(n),k)*R(2^(A000523(n)-k),x) for n > 0, n != 2^m with R(0,x) = 1 where R(2^m,x) is the (m+1)-th row polynomial of A078121. - Mikhail Kurkov, Jun 28 2025

Extensions

More terms from Alford Arnold, May 22 2004