A089185 Numbers n with following property: suppose n^2 = d1 d2 d3 ...dk in decimal; then d1! + d2! + ... + dk! is a square.
1, 11, 12, 21, 43, 190, 216, 251, 258, 370, 384, 408, 440, 462, 669, 762, 804, 809, 871, 884, 919, 1188, 1519, 1520, 1521, 1790, 1800, 1875, 2305, 2312, 2538, 2997, 3151, 3210, 3362, 3474, 4026, 4561, 5110, 5490, 5521, 5569, 5726, 5762, 5785, 7216, 7521
Offset: 1
Examples
a(4)=21: 21^2=441, (4!+4!+1!)^(1/2)=7.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= n -> issqr(add(d!, d=convert(n^2,base,10))): select(filter, [$1..10^4]); # Robert Israel, Mar 18 2018
Extensions
More terms from Yalcin Aktar, Mar 02 2007