cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089200 Primes p such that p-1 is divisible by a cube.

Original entry on oeis.org

17, 41, 73, 89, 97, 109, 113, 137, 163, 193, 233, 241, 251, 257, 271, 281, 313, 337, 353, 379, 401, 409, 433, 449, 457, 487, 521, 541, 569, 577, 593, 601, 617, 641, 673, 751, 757, 761, 769, 809, 811, 857, 881, 919, 929, 937, 953, 977
Offset: 1

Views

Author

Cino Hilliard, Dec 08 2003

Keywords

Comments

This sequence is infinite and its relative density in the sequence of primes is 1 - Product_{p prime} (1-1/(p^2*(p-1))) = 1 - A065414 = 0.30249864150363409671... (Jakimczuk, 2024). - Amiram Eldar, Jul 20 2024

Crossrefs

Programs

  • Mathematica
    f[n_]:=Max[Last/@FactorInteger[n]]; lst={};Do[p=Prime[n];If[f[p-1]>=3,AppendTo[lst,p]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 03 2009 *)
    Select[Prime[Range[200]],Count[Transpose[FactorInteger[#-1]][[2]], ?(#>2&)]>0&] (* _Harvey P. Dale, Jan 01 2012 *)
  • PARI
    ispowerfree(m,p1) = { flag=1; y=component(factor(m),2); for(i=1,length(y), if(y[i] >= p1,flag=0;break); ); return(flag) }
    powerfreep3(n,p,k) = { c=0; pc=0; forprime(x=2,n, pc++; if(ispowerfree(x+k,p)==0, c++; print1(x","); ) ); print(); print(c","pc","c/pc+.0) }