A089200 Primes p such that p-1 is divisible by a cube.
17, 41, 73, 89, 97, 109, 113, 137, 163, 193, 233, 241, 251, 257, 271, 281, 313, 337, 353, 379, 401, 409, 433, 449, 457, 487, 521, 541, 569, 577, 593, 601, 617, 641, 673, 751, 757, 761, 769, 809, 811, 857, 881, 919, 929, 937, 953, 977
Offset: 1
Links
- Daniel Starodubtsev, Table of n, a(n) for n = 1..10000
- Rafael Jakimczuk, Numbers of the form p-1 where p is prime, ResearchGate preprint, 2024.
Programs
-
Mathematica
f[n_]:=Max[Last/@FactorInteger[n]]; lst={};Do[p=Prime[n];If[f[p-1]>=3,AppendTo[lst,p]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 03 2009 *) Select[Prime[Range[200]],Count[Transpose[FactorInteger[#-1]][[2]], ?(#>2&)]>0&] (* _Harvey P. Dale, Jan 01 2012 *)
-
PARI
ispowerfree(m,p1) = { flag=1; y=component(factor(m),2); for(i=1,length(y), if(y[i] >= p1,flag=0;break); ); return(flag) } powerfreep3(n,p,k) = { c=0; pc=0; forprime(x=2,n, pc++; if(ispowerfree(x+k,p)==0, c++; print1(x","); ) ); print(); print(c","pc","c/pc+.0) }
Comments