A166000 Primes p such that p-5, p-3, p+3, and p+5 are divisible by cubes.
12253, 14747, 65173, 83003, 93253, 95747, 109139, 147253, 176747, 213349, 255253, 282253, 284747, 287437, 305267, 311747, 315517, 336253, 338747, 364699, 365747, 444253, 452579, 471253, 525253, 554747, 583789, 633253, 716747, 741253, 743747
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..16574
Programs
-
Maple
filter:= proc(p) local d; if not isprime(p) then return false fi; for d in [-5,-3,3,5] do if max(map(t -> t[2], ifactors(p+d)[2])) < 3 then return false fi; od; true end proc: select(filter, [seq(t,t=7..10^6,2)]); # Robert Israel, Apr 21 2016 # alternative isA166000 := proc(n) if isprime(n) then isA046099(n-3) and isA046099(n+3) and isA046099(n-5) and isA046099(n+5) ; else false; end if; end proc: # R. J. Mathar, Aug 14 2024
-
Mathematica
f[n_]:=Max[Last/@FactorInteger[n]]; q=3;lst={};Do[p=Prime[n];If[f[p-5]>=q&&f[p-3]>=q&&f[p+3]>=q&&f[p+5]>=q,AppendTo[lst,p]],{n,4*8!}];lst
-
PARI
ncf(n)={vecmax(factor(n)[,2])>2};forprime(p=5,1e7,if(ncf(p+5)&&ncf(p+3)&&ncf(p-3)&&ncf(p-5),print1(p","))) /* Charles R Greathouse IV, Oct 05 2009 */
Comments