A089212 Primes p such that p-1 and p+1 are divisible by a fifth power.
13121, 20897, 25759, 75329, 80191, 106433, 118751, 137537, 153089, 157951, 176417, 191969, 196831, 207521, 212383, 215297, 230849, 243487, 251263, 274591, 281249, 285281, 313471, 318751, 321247, 324161, 331937, 336799, 347489, 378593
Offset: 1
Examples
13121 is a term since 13121 - 1 = 2^6 * 5 * 41, 13121 + 1 = 2 * 3^8.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[n_]:=Max[Last/@FactorInteger[n]]; lst={};Do[p=Prime[n];If[f[p-1]>=5&&f[p+1]>=5,AppendTo[lst,p]],{n,8!}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 03 2009 *)
-
PARI
\\ Input no. of iterations n, power p and number to subtract and add k. ispowerfree(m,p1) = { flag=1; y=component(factor(m),2); for(i=1,length(y), if(y[i] >= p1,flag=0;break); ); return(flag) } powerfreep4(n,p,k) = { c=0; pc=0; forprime(x=2,n, pc++; if(!ispowerfree(x-k,p) && !ispowerfree(x+k,p), c++; print1(x","); ) ); print(); print(c","pc","c/pc+.0) }