cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089260 Decimal expansion of -x, the largest negative real root of the equation Fibonacci(x) = 0.

Original entry on oeis.org

1, 8, 3, 8, 0, 2, 3, 5, 9, 6, 9, 2, 9, 5, 5, 6, 0, 4, 9, 1, 3, 9, 6, 9, 0, 1, 0, 1, 5, 1, 2, 6, 6, 7, 3, 4, 2, 5, 7, 1, 2, 2, 7, 1, 9, 8, 6, 5, 3, 4, 2, 8, 1, 7, 0, 9, 4, 9, 6, 0, 8, 2, 7, 7, 0, 1, 4, 4, 7, 8, 9, 4, 0, 4, 7, 7, 4, 0, 6, 1, 4, 5, 6, 6, 5, 4, 9, 6, 3, 4, 8, 5, 8, 7, 8, 3, 7, 3, 3, 9, 6, 1, 4, 1, 7
Offset: 0

Views

Author

T. D. Noe, Oct 27 2003

Keywords

Comments

For a complex number z, the Fibonacci function is defined as (phi^z - cos(z*Pi) / phi^z) / sqrt(5), where phi is the golden ratio (1 + sqrt(5))/2. There are zeros at z = 0 and an infinite number of negative numbers that approach n + 0.5, for all negative integers n.

Examples

			0.18380235969295560491396901015126673425712271986534281709496082770...
		

Crossrefs

Cf. A089261 (continued fraction), A353920.

Programs

  • Maple
    sphi := x -> ((1/2 - sqrt(5)/2)^x - (1/2 + sqrt(5)/2)^x)/sqrt(5):
    Digits := 120: fsolve(Re(sphi(x)) = 0, x, -0.3..-0.1, fulldigits)*10^105:
    ListTools:-Reverse(convert(floor(-%), base, 10)); # Peter Luschny, May 11 2022
  • Mathematica
    RealDigits[ -x/.FindRoot[Fibonacci[x]==0, {x, -0.2}, WorkingPrecision->100]][[1]]
    (* Or: *)
    Sphi[x_] := 2 Im[Sin[(x/2) (Pi - 2 I ArcCsch[2])] / I^x];
    x /. FindRoot[Sphi[x], {x, -0.2}, WorkingPrecision -> 120]
    RealDigits[%, 10, 105][[1]] (* Peter Luschny, May 11 2022 *)

Formula

Equals the largest negative real root of 2*Im(sin((x/2)*(Pi - 2*i*arccsch(2))) / i^x). - Peter Luschny, May 11 2022