A089264 Number of permutations of length n containing exactly once 132 and 213, likewise for pattern pair (231,312).
3, 6, 17, 42, 102, 242, 564, 1296, 2944, 6624, 14784, 32768, 72192, 158208, 345088, 749568, 1622016, 3497984, 7520256, 16121856, 34471936, 73531392, 156499968, 332398592, 704643072, 1491075072, 3149922304, 6643777536, 13992198144
Offset: 4
Links
- Aaron Robertson, Permutations restricted by two distinct patterns of length three, arXiv:math/0012029 [math.CO], 2000.
- Index entries for linear recurrences with constant coefficients, signature (6,-12,8).
Crossrefs
Cf. A001815.
Programs
-
Mathematica
LinearRecurrence[{6,-12,8},{3,6,17,42,102,242},40] (* Harvey P. Dale, Apr 10 2022 *)
Formula
For n>=7, a(n) = (n^2+21*n-28)*2^(n-9).
G.f.: x^4*(x-1)^2*(2*x^3-2*x^2+6*x-3) / (2*x-1)^3. [Colin Barker, Jan 31 2013]