A089267 Continued fraction expansion with iterated 3-fold symmetry.
0, 1, 1, 23, 1, 2, 1, 18815, 3, 1, 23, 3, 1, 23, 1, 2, 1, 106597754640383, 3, 1, 23, 1, 3, 23, 1, 3, 18815, 1, 2, 1, 23, 3, 1, 23, 1, 2, 1, 18815, 3, 1, 23, 3, 1, 23, 1, 2, 1, 1715738475058821295603924428015888899408203312889855, 3, 1
Offset: 1
Links
Crossrefs
Cf. A007400.
Programs
-
Mathematica
nmax = 50; f[m_] := ContinuedFraction[ Sum[ 1/ChebyshevT[4^k, 2], {k, 0, m}]]; A089267 = Catch[ For[m = 1, True, m++, If[ Length[fm = f[m]] > nmax, Throw[ fm[[1 ;; nmax]] ]]]] (* Jean-François Alcover, Sep 19 2012 *)
-
PARI
contfrac(suminf(k=0,1/subst(poltchebi(4^k),x,2)))
-
PARI
contfrac(suminf(k=0,1/polchebyshev(4^k,1,2))) \\ Charles R Greathouse IV, May 28 2015
Formula
Sum_{k=0..infinity} 1/chebyshev(4^k, 2) = 0.51030927976262776140...