A089275 Coefficient triangle of polynomials used for numerator of g.f.s for column sequences of array A078739.
1, 1, 18, 1, 118, 600, 1, 412, 11772, 35280, 1, 1060, 97308, 1494576, 3265920, 1, 2270, 508708, 23753736, 249815520, 439084800, 1, 4298, 1989148, 218417400, 6710001408, 54187574400, 80951270400, 1, 7448, 6355048, 1402502400
Offset: 1
Links
- Wolfdieter Lang, First 7 rows, also for A089276
Formula
Combined recursion for polynomials pe(n, x) and po(n, x) defined above: pe(n, x)= 4*(2*n-1)*n*(n-1)*x*po(n-1, x) + (1-(2*n-1)*(2*n-2)*x)*pe(n-1, x) and po(n, x) = 2*(pe(n, x) + ((n-1)/2)*(1-2*n*(2*n-1)*x)*po(n-1, x))/(n+1), n >= 2, with po(1, x) = 1 = pe(1,x). (Corrected Wolfdieter Lang, Apr 11 2013)
Rewritten recursion for polynomial po: po(n, x) = (2*(1 - 2*(2*n-1)*(n-1)*x)*pe(n-1, x) + (n-1)*(1 + 6*n*(2*n-1)*x)* po(n-1, x))/(n+1), with pe(n,x) from above. - Wolfdieter Lang, Apr 11 2013
Combined recursion with b(n, m) := A089276(n, m): a(n, m) = a(n-1, m) - 2*(2*n-1)*(n-1)*a(n-1, m-1) + 4*n*(2*n-1)*(n-1)*b(n-1, m-1) and b(n, m) = (-2*n*(2*n-1)*(n-1)*b(n-1, m-1) + (n-1)*b(n-1, m) + 2*a(n, m))/(n+1), with n >= m+1 >= 2 and a(1, 0)= 1 = b(1, 0), else 0.
Rewritten recursion for triangle b: b(n, m) = (6*n*(2*n-1)*(n-1)*b(n-1, m-1) + (n-1)*b(n-1, m) + 2*a(n-1, m) - 4*(2*n-1)*(n-1)*a(n-1, m-1))/(n+1), with a(n, m) from above. - Wolfdieter Lang, Apr 11 2013
Comments