cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089275 Coefficient triangle of polynomials used for numerator of g.f.s for column sequences of array A078739.

Original entry on oeis.org

1, 1, 18, 1, 118, 600, 1, 412, 11772, 35280, 1, 1060, 97308, 1494576, 3265920, 1, 2270, 508708, 23753736, 249815520, 439084800, 1, 4298, 1989148, 218417400, 6710001408, 54187574400, 80951270400, 1, 7448, 6355048, 1402502400
Offset: 1

Views

Author

Wolfdieter Lang, Nov 07 2003

Keywords

Comments

The polynomials are pe(n,x) := sum(a(n,m)*x^m,m=0..n-1). Companion polynomials are po(n,x) := sum(b(n,m)*x^m,m=0..n-1) with b(n,m) := A089276(n,m).

Crossrefs

Formula

Combined recursion for polynomials pe(n, x) and po(n, x) defined above: pe(n, x)= 4*(2*n-1)*n*(n-1)*x*po(n-1, x) + (1-(2*n-1)*(2*n-2)*x)*pe(n-1, x) and po(n, x) = 2*(pe(n, x) + ((n-1)/2)*(1-2*n*(2*n-1)*x)*po(n-1, x))/(n+1), n >= 2, with po(1, x) = 1 = pe(1,x). (Corrected Wolfdieter Lang, Apr 11 2013)
Rewritten recursion for polynomial po: po(n, x) = (2*(1 - 2*(2*n-1)*(n-1)*x)*pe(n-1, x) + (n-1)*(1 + 6*n*(2*n-1)*x)* po(n-1, x))/(n+1), with pe(n,x) from above. - Wolfdieter Lang, Apr 11 2013
Combined recursion with b(n, m) := A089276(n, m): a(n, m) = a(n-1, m) - 2*(2*n-1)*(n-1)*a(n-1, m-1) + 4*n*(2*n-1)*(n-1)*b(n-1, m-1) and b(n, m) = (-2*n*(2*n-1)*(n-1)*b(n-1, m-1) + (n-1)*b(n-1, m) + 2*a(n, m))/(n+1), with n >= m+1 >= 2 and a(1, 0)= 1 = b(1, 0), else 0.
Rewritten recursion for triangle b: b(n, m) = (6*n*(2*n-1)*(n-1)*b(n-1, m-1) + (n-1)*b(n-1, m) + 2*a(n-1, m) - 4*(2*n-1)*(n-1)*a(n-1, m-1))/(n+1), with a(n, m) from above. - Wolfdieter Lang, Apr 11 2013