A089435 Triangle read by rows: T(n,k) (n >= 2, k >= 0) is the number of non-crossing connected graphs on n nodes on a circle, having k triangles. Rows are indexed 2,3,4,...; columns are indexed 0,1,2,....
1, 3, 1, 13, 8, 2, 66, 60, 25, 5, 367, 442, 255, 84, 14, 2164, 3248, 2380, 1064, 294, 42, 13293, 23904, 21192, 11832, 4410, 1056, 132, 84157, 176397, 183303, 122115, 56430, 18216, 3861, 429, 545270, 1305480, 1554850, 1200320, 657195, 262262, 75075
Offset: 2
Examples
T(4,1)=8 because, considering the complete graph K_4 on the nodes A,B,C and D, we obtain a non-crossing connected graph on A,B,C,D, with exactly one triangle, by deleting one of the two diagonals and one of the four sides (8 possibilities). Triangle starts: 1; 3, 1; 13, 8, 2; 66, 60, 25, 5; 367, 442, 255, 84, 14; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 2..1276
- P. Flajolet and M. Noy, Analytic combinatorics of non-crossing configurations, Discrete Math., 204, 203-229, 1999.
Crossrefs
Programs
-
Mathematica
t[n_, k_] = Binomial[n+k-2, k]*Sum[Binomial[n+k+i-2, i]*Binomial[3n-3-k-i, 2n-1+i], {i, 0, Floor[(n-k-2)/2]}]/(n-1) ; Flatten[Table[t[n, k], {n, 2, 10}, {k, 0, n-2}]][[1 ;; 43]] (* Jean-François Alcover, Jun 20 2011 *)
-
PARI
T(n, k) = binomial(n+k-2, k)*sum(i=0,floor((n-k-2)/2),binomial(n+k+i-2, i)*binomial(3*n-3-k-i, 2*n-1+i))/(n-1); \\ Michel Marcus, Oct 26 2015
Formula
T(n, k) = binomial(n+k-2, k)*sum(binomial(n+k+i-2, i)*binomial(3*n-3-k-i, 2*n-1+i), i=0..floor((n-k-2)/2))/(n-1), n>=2, k>=0.
G.f.: G(t, z) satisfies G^4 + G^3 + (t-4)*z*G^2-2*(t-2)*z^2*G + (t-1)*z^3 = 0.
Extensions
Keyword tabl added by Michel Marcus, Apr 09 2013