cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A143022 Triangle read by rows: T(n,k) is the number of non-crossing connected graphs on n nodes on a circle in which the root (a distinguished node) has degree k (n >= 2, 1 <= k <= n-1).

Original entry on oeis.org

1, 2, 2, 9, 10, 4, 54, 62, 32, 8, 374, 436, 248, 88, 16, 2820, 3316, 1984, 816, 224, 32, 22485, 26586, 16404, 7320, 2416, 544, 64, 186494, 221350, 139424, 65512, 24032, 6688, 1280, 128, 1592778, 1895740, 1211848, 590040, 231824, 73088, 17664, 2944
Offset: 2

Views

Author

Emeric Deutsch, Jul 30 2008

Keywords

Comments

Row sums yield A007297.
T(n,1) = A089436(n).
Sum_{k=1..n-1} k*T(n,k) = A143023.

Examples

			T(3,1)=2, T(3,2)=2 because in the graphs (AB,BC,CA), (AB,AC), (AB,BC) and (AC,BC) the node A has degrees 2, 2, 1 and 1, respectively.
Triangle starts:
     1;
     2,    2;
     9,   10,    4;
    54,   62,   32,   8;
   374,  436,  248,  88,  16;
  2820, 3316, 1984, 816, 224, 32;
		

Crossrefs

Programs

  • Maple
    L:=proc(p,q,r) options operator, arrow: sum(binomial(q, i)*binomial(r+p-1-i, r-1), i=0..min(p, q)) end proc: T:=proc(n,k) options operator, arrow: 2^(k-1)*(k*L(n-k-1,3*n-k-4,n-2)-L(n-k-2,3*n-k-3,n-1))/(n-1) end proc: for n from 2 to 10 do seq(T(n,k),k=1..n-1) end do; # yields sequence in triangular form
  • Mathematica
    L[p_, q_, r_] := Sum[Binomial[q, i]*Binomial[r + p - 1 - i, r-1], {i, 0, Min[p, q]}]; t[n_, k_] := 2^(k-1)*(k*L[n - k - 1, 3*n - k - 4, n - 2] - L[n - k - 2, 3*n - k - 3, n-1])/(n-1); t[2, 1] = 1; Flatten[ Table[t[n, k], {n, 2, 10}, {k, 1, n-1}]] (* Jean-François Alcover, Oct 05 2011, after Maple *)
  • PARI
    L(p,q,r)={sum(i=0, min(p,q), binomial(q,i)*binomial(r+p-1-i,r-1))}
    T(n,k)={if(n<3, n==2&&k==1, 2^(k-1)*(k*L(n-k-1, 3*n-k-4, n-2) - L(n-k-2, 3*n-k-3, n-1))/(n-1))}
    for(n=2, 10, for(k=1, n-1, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 17 2017
    
  • PARI
    S(n)={my(g=x+x*serreverse((x-x^2)/(1+x)^3 + O(x^n))); Vec(g*(x - y*(g-x))/(g - 2*y*(g - x)))}
    my(v=S(10)); for(n=2, #v, my(p=v[n]); for(k=1, n-1, print1(polcoeff(p,k), ", ")); print) \\ Andrew Howroyd, Nov 17 2017

Formula

T(n,k) = 2^(k-1)*(k*L(n-k-1, 3*n-k-4, n-2) - L(n-k-2, 3*n-k-3, n-1))/(n-1) (n >= 2, 1 <= k <= n-1), where L(p,q,r) = [u^p](1+u)^q/(1-u)^r = Sum_{i=0..min(p,q)} binomial(q,i)*binomial(r+p-1-i, r-1).
G.f.: G(t,z) = g*(z - t*(g-z))/(g - 2*t*(g-z)), where g=g(z), the g.f. for the number of non-crossing connected graphs on n nodes on a circle, satisfies g^3 + g^2 - 3*z*g + 2*z^2 = 0 (A007297).

A143021 Number of vertices of degree 1 in all non-crossing connected graphs on n points on a circle.

Original entry on oeis.org

2, 6, 36, 270, 2244, 19740, 179880, 1678446, 15927780, 153055188, 1485010488, 14518525164, 142821228648, 1412109087480, 14021321053392, 139725123309486, 1396698760714788, 13998927825197220, 140638610864578200
Offset: 2

Views

Author

Emeric Deutsch, Jul 30 2008

Keywords

Examples

			a(3)=6 because in the graphs (AB,BC,CA), (AB,AC), (AB,BC) and (AC,BC) the vertices of degree 1 are (none), {B,C}, {A,C} and {A,B}.
		

Crossrefs

Programs

  • Maple
    g:=-1/3+(2/3)*sqrt(1+9*z)*sin((1/3)*arcsin(((2+27*z+54*z^2)*1/2)/(1+9*z)^(3/2))): ser:=series(z*(diff(g^2,z)),z=0,25): seq(coeff(ser,z,n), n=2..21);
  • Mathematica
    terms = 19;
    g[x_] = 0; Do[g[x_] = g[x]^2 + x (1+g[x])^3 + O[x]^(terms+2), {terms+2}];
    Drop[CoefficientList[(x+x g[x])^2+O[x]^(terms+2), x], 2] Range[2, terms+1] (* Jean-François Alcover, Jul 29 2018, after A089436 and Andrew Howroyd *)
  • PARI
    { my(n=30); Vec(deriv((x+x*serreverse((x-x^2)/(1+x)^3 + O(x^n)))^2)) } \\ Andrew Howroyd, Dec 22 2017

Formula

a(n) = n*A089436(n).
G.f.: z*(d/dz)g^2, where g=g(z), the g.f. for the number of non-crossing connected graphs on n nodes on a circle, satisfies g^3 + g^2 - 3zg + 2z^2 = 0 (A007297).
D-finite with recurrence (n-1)*(n-2)*a(n) -34*(n-2)*(n-4)*a(n-1) +4*(29*n^2-396*n+937)*a(n-2) +24*(153*n^2-1071*n+1810)*a(n-3) -2688*(3*n-14)*(3*n-16)*a(n-4)=0. - R. J. Mathar, Jul 22 2022

A143024 Triangle read by rows: T(n,k) is the number of non-crossing connected graphs on n nodes on a circle having root (a distinguished node) of degree 1 and having k edges (n >= 2, 1 <= k <= 2n-4).

Original entry on oeis.org

1, 0, 2, 0, 0, 7, 2, 0, 0, 0, 30, 20, 4, 0, 0, 0, 0, 143, 156, 65, 10, 0, 0, 0, 0, 0, 728, 1120, 720, 224, 28, 0, 0, 0, 0, 0, 0, 3876, 7752, 6783, 3192, 798, 84, 0, 0, 0, 0, 0, 0, 0, 21318, 52668, 58520, 36960, 13860, 2904, 264, 0, 0, 0, 0, 0, 0, 0, 0, 120175, 354200, 478170
Offset: 2

Views

Author

Emeric Deutsch, Jul 31 2008

Keywords

Comments

Row n contains 2n-4 terms, the first n-2 of which are 0.
Row sums yield A089436.
T(n,n-1) = A006013(n-2).
Sum_{k=2..2n-4} k*T(n,k) = A143025.

Examples

			T(3,2)=2 because we have {AB,BC} and {AC, BC} (A is the root).
Triangle starts:
  1;
  0,   2;
  0,   0,   7,   2;
  0,   0,   0,  30,  20,   4;
  0,   0,   0,   0, 143, 156,  65,  10;
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) options operator, arrow: 2*binomial(k-2,n-3)*binomial(3*n-5,2*n-k-4)/(n-2) end proc: 1; for n from 3 to 10 do 0, seq(T(n,k),k=2..2*n-4) end do; % yields sequence in triangular form

Formula

T(n,k) = 2*binomial(k-2, n-3)*binomial(3n-5, 2n-k-4)/(n-2) (n >= 3, 2 <= k <= 2n-4); T(2,1)=1; T(2,k)=0 (k >= 2).
The trivariate g.f. G=G(t,s,z) for non-crossing connected graphs on nodes on a circle, with respect to number of nodes (marked by z), number of edges (marked by t) and degree of root (marked by s) is G=z + tszg^2/[z-ts(g - z + g^2)], where g=g(t,z) satisfies tg^3 + tg^2 - (1 + 2t)zg +(1 + t)z^2 = 0 (see Domb & Barrett, Eq. (47); Flajolet & Noy, Eq. (18)).
Showing 1-3 of 3 results.