A089491 Decimal expansion of Buffon's constant 3/Pi.
9, 5, 4, 9, 2, 9, 6, 5, 8, 5, 5, 1, 3, 7, 2, 0, 1, 4, 6, 1, 3, 3, 0, 2, 5, 8, 0, 2, 3, 5, 0, 8, 6, 1, 7, 2, 2, 0, 6, 7, 5, 7, 8, 7, 4, 4, 4, 2, 7, 3, 8, 6, 9, 2, 4, 8, 6, 0, 0, 4, 0, 6, 4, 3, 5, 3, 3, 8, 0, 7, 8, 5, 8, 0, 5, 3, 5, 9, 2, 1, 0, 5, 4, 0, 6, 8, 2, 8, 1, 6, 5, 9, 7, 5, 1, 8, 5, 1, 5, 7, 3, 6, 4, 3, 7
Offset: 0
Examples
3/Pi = 0.95492965855137201461330258023508617220675787444273869248600...
References
- Joe Portney, Portney's Ponderables, Litton Systems, Inc., Appendix 2, 'Buffon's Needle' by Lawrence R. Weill, 200, pp. 135-138.
Links
- Harry Khamis, Buffon's Needle Problem.
- D. S. Mitrinović, J. E. Pečarić, and V. Volenec, Recent Advances In Geometric Inequalities, Kluwer Academic Publishers, 1989, Inequalities 4.11, p. 170.
- A. Oppenheim, Problem E 2649, American Mathematical Monthly, 84 (1977), p. 294.
- Kevin Peterson, A Problem in Geometric Probability: Buffon's Needle Problem.
- George Reese, Buffon's Needle, An Analysis and Simulation.
- Shodor Education Foundation, Inc., Buffon's needle.
- Washington and Lee University, Problem 18: Buffon's Needle Again. [Broken link]
- Eric Weisstein's World of Mathematics, Buffon's needle problem.
- Eric Weisstein's World of Mathematics, Buffon-Laplace needle problem.
- Eric Weisstein's World of Mathematics, Generalized Diameter.
- Index entries for transcendental numbers
Programs
-
Mathematica
RealDigits[ N[ 3/Pi, 111]][[1]]
-
PARI
3/Pi \\ Michel Marcus, Nov 05 2020
Formula
Equals sinc(Pi/6). - Peter Luschny, Oct 04 2019
From Amiram Eldar, Aug 20 2020: (Start)
Equals Product{k>=1} cos(Pi/(6*2^k)).
Equals Product{k>=1} (1 - 1/(6*k)^2). (End)
Comments