cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089505 Triangle of signed numbers used for the computation of the column sequences of triangle A089504.

Original entry on oeis.org

1, -1, 4, 1, -24, 50, -1, 114, -950, 1350, 31, -15504, 400520, -1897200, 2052855, -9269, 19612560, -1431859000, 17333030000, -56265334125, 49236404224, 342953, -3011508588, 594221485000, -16634292228125, 123422029355625, -302409994743808, 222337901418633, -9945637
Offset: 1

Views

Author

Wolfdieter Lang, Dec 01 2003

Keywords

Comments

A089504(n+m,m)= sum(a(m,p)*((p+2)*(p+1)*p)^n,p=1..m)/D(m) with D(m) := A089506(m); m=1,2,..., n>=0.

Examples

			[1]; [ -1,4]; [1,-24,50]; [ -1,114,-950,1350]; ...
a(3,2)= -24 = 27*(-1)*((4*3*2)^2)/((4*3*2-3*2*1)*(5*4*3-4*3*2)).
A089504(2+3,3) = A089513(2) = 6156 = (1*(3*2*1)^2 - 24*(4*3*2)^2 + 50*(5*4*3)^2)/27.
		

Crossrefs

Companion denominator sequence is A089506.

Programs

  • Mathematica
    b[n_, m_] := (-1)^(n - m)*FactorialPower[m + 2, 3]^(n - 1)/(Product[ FactorialPower[m + 2, 3] - FactorialPower[r + 2, 3], {r, 1, m - 1}] * Product[ FactorialPower[r + 2, 3] - FactorialPower[m + 2, 3], {r, m + 1, n}]); den[n_] := LCM @@ Table[ Denominator[b[n, m]], {m, 1, n}]; a[n_, m_] := den[n]*b[n, m]; Table[a[n, m], {n, 1, 10}, {m, 1, n}] // Flatten (* Jean-François Alcover, Sep 02 2016 *)

Formula

a(n, m)= D(n)*((-1)^(n-m))*(((m+2)*(m+1)*m)^(n-1))/(product(fallfac(m+2, 3)-fallfac(r+2, 3), r=1..m-1)*product(fallfac(r+2, 3)-fallfac(m+2, 3), r=m+1..n)), with D(n) := A089506(n) and fallfac(n, m) := A008279(n, m) (falling factorials), 1<=m<=n else 0. (Replace in the denominator the first product by 1 if m=1 and the second one by 1 if m=n.)
a(n, m)= A089506(n)*((-1)^(n-m))*(fallfac(m+2, 3)^(n-1))*(3*m^2+6*m+2)/((n-m)!*(m-1)!*product(fallfac(m+r+2, 2)-r*m, r=1..n)), n>=m>=1.