A089508 Solution to a binomial problem together with companion sequence A081016(n-1).
1, 14, 103, 713, 4894, 33551, 229969, 1576238, 10803703, 74049689, 507544126, 3478759199, 23843770273, 163427632718, 1120149658759, 7677619978601, 52623190191454, 360684711361583, 2472169789339633, 16944503814015854
Offset: 1
Examples
n = 2: a(2) = 14, b(2) = A081016(1) = 6 satisfy binomial(14,6) = 3003 = binomial(15,5). 3003 = A090162(2).
References
- A. I. Shirshov: On the equation binomial(n,m)=binomial(n+1,m-1), pp. 83-86, in: Kvant Selecta: Algebra and Analysis, I, ed. S. Tabachnikov, Am.Math.Soc., 1999.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Wikipedia, Singmaster's conjecture
- Index entries for linear recurrences with constant coefficients, signature (8, -8, 1).
Crossrefs
Equals A081018 - 1.
Programs
-
Magma
[Fibonacci(2*n)*Fibonacci(2*n+1) - 1: n in [1..30]]; // G. C. Greubel, Dec 18 2017
-
Mathematica
Rest[CoefficientList[Series[x*(1 + 6*x - x^2)/((1 - x)*(1 - 7*x + x^2)), {x, 0, 50}], x]] (* G. C. Greubel, Dec 18 2017 *)
-
PARI
x='x+O('x^30); Vec(x*(1 + 6*x - x^2)/((1 - x)*(1 - 7*x + x^2))) \\ G. C. Greubel, Dec 18 2017
Comments