cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089515 Triangle of signed numbers used for the computation of the column sequences of triangle A090215.

Original entry on oeis.org

1, -1, 5, 1, -35, 90, -3, 595, -6885, 12005, 143, -150535, 6175845, -39484445, 52245760, -58201, 316465625, -42458934375, 772604284375, -3322503800000, 3547818864576, 216931, -6012846875, 2544269990625, -120371747505625, 1294115230100000, -4145626343257056, 3713894747640000
Offset: 1

Views

Author

Wolfdieter Lang, Dec 01 2003

Keywords

Comments

A090215(n+m,m)= sum(a(m,p)*((p+3)*(p+2)*(p+1)*p)^n,p=1..m)/D(m) with D(m) := A089516(m); m=1,2,..., n>=0.

Examples

			Triangle begins:
   1;
  -1,   5;
   1, -35,   90;
  -3, 595,-6885, 12005;
  ...
A090215(2+3,3) = 199296 = (1*(4*3*2*1)^2 - 35*(5*4*3*2)^2 + 90*(6*5*4*3)^2)/56.
a(3,2)= -35 = 56*(-1)*((5*4*3*2)^2)/((5*4*3*2-4*3*2*1)*(6*5*4*3-5*4*3*2)).
		

Formula

a(n, m)= D(n)*((-1)^(n-m))*(fallfac(m+3, 4)^(n-1))/(product(fallfac(m+3, 4)-fallfac(r+3, 4), r=1..m-1)*product(fallfac(r+3, 4)-fallfac(m+3, 4), r=m+1..n)), with D(n) := A089516(n) and fallfac(n, m) := A008279(n, m) (falling factorials), 1<=m<=n else 0. (Replace in the denominator the first product by 1 if m=1 and the second one by 1 if m=n.)