cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089517 Array used for numerators of g.f.s for column sequences of array A078741 ((3,3)-Stirling2).

Original entry on oeis.org

1, 18, 9, 432, 1, 672, 14400, 243, 47520, 648000, 27, 36396, 3790800, 38102400, 1, 9765, 5115888, 354715200, 2844979200, 1107, 2499552, 757646784, 39182330880, 263363788800, 54, 546453, 592216272, 123294623040, 5089348454400
Offset: 3

Views

Author

Wolfdieter Lang, Dec 01 2003

Keywords

Comments

The row length sequence for this array is A004396(n-2)=floor((2*n-3)/3), n>=3: [1,1,2,3,3,4,5,5,6,7,7,8,9,9,10,...].
The g.f. G(m,x) for the m-th column sequence (with leading zeros) of array A078741 is given there. The recurrence is G(m,x) = x*(3*fallfac(m-1,2)*G(m-1,x) + 3*(m-2)*G(m-2,x) + G(m-3,x))/(1-fallfac(m,3)*x), m>=4, with inputs G(1,x)=0=G(2,x) and G(3,x)=x/(1-(3*2*1)*x); where fallfac(n,m) := A008279(n,m) (falling factorials). Computed from the Blasiak et al. reference, eqs. (20) and (21) with r=3: recurrence for S_{3,3}(n,k).

Examples

			[1]; [18]; [9,423]; [1,672,14400]; [243,47520,648000]; ...
G(4,x)/(x^2) = 18/((1-3*2*1*x)*(1-4*3*2*x)). kmax(4)=0, hence P(4,x)=a(4,0)=18; x^2 from x^ceiling(4/3).
		

Formula

a(n, m) from: sum(a(n, m)*x^m, m=0..kmax(n)) = G(n, x)* product(1-fallfac(p, 3)*x, p=3..n)/x^ceiling(n/3), n>=3, with G(n, x) defined from the recurrence given above and kmax(n) := A004523(n-3)= floor(2*(n-3)/3) = A004396(n-3)-1.