A089618 Continued fraction elements constructed out of a van der Corput discrepancy sequence. Interpreted as such, it is the simple continued fraction of 0.461070495956719519354149869336699687678...
0, 2, 5, 1, 11, 1, 3, 1, 22, 2, 4, 1, 7, 1, 2, 1, 45, 2, 4, 1, 8, 1, 3, 1, 14, 1, 3, 1, 6, 1, 2, 1, 91, 2, 4, 1, 9, 1, 3, 1, 17, 2, 3, 1, 6, 1, 2, 1, 30, 2, 4, 1, 7, 1, 2, 1, 12, 1, 3, 1, 5, 1, 2, 1, 184, 2, 5, 1, 10, 1, 3, 1, 20, 2, 4, 1, 6, 1, 2, 1, 36, 2, 4
Offset: 0
Examples
40 is 101000 in base 2, so b(40) = 0.078125 (the equivalent of binary 0.000101), 1/(2^0.078125-1) is approximately 17.97 and a(40) is the integer part of this: 17.
Links
- Andrey Zabolotskiy, Table of n, a(n) for n = 0..10000
- D. Bailey, J. Borwein, & R. Crandall, On the Khintchine constant, Mathematics of Computation 66:217 (January 1997), pp. 417-431.
- T. Wieting, A Khinchin Sequence, Proc. Amer. Math. Soc., 136 (2008), 815-824.
Programs
-
Mathematica
a[n_] := (m = IntegerDigits[n, 2]; l = Length[m]; s = "2^^."; Do[s = s <> ToString[m[[i]]], {i, l, 1, -1}]; Floor[1/(2^ToExpression[s]-1)]); Prepend[Table[a[i], {i, 1, 120}], 0] a[n_] := If[n==0, 0, Floor[1 / (2^FromDigits[{Reverse[IntegerDigits[n,2]],0},2] - 1)]]; (* Andrey Zabolotskiy, Feb 20 2017 *)
Formula
a(n) = integer part of 1/(2^b(n)-1) where b(n) = digit-reversal of binary of (positive integer) n, preceded by a decimal point and converted (from base 2) to base 10; initial term, a(0), is defined as 0.
Comments