cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089625 Replace 2^k in binary expansion of n with (k+1)-st prime.

Original entry on oeis.org

2, 3, 5, 5, 7, 8, 10, 7, 9, 10, 12, 12, 14, 15, 17, 11, 13, 14, 16, 16, 18, 19, 21, 18, 20, 21, 23, 23, 25, 26, 28, 13, 15, 16, 18, 18, 20, 21, 23, 20, 22, 23, 25, 25, 27, 28, 30, 24, 26, 27, 29, 29, 31, 32, 34, 31, 33, 34, 36, 36, 38, 39, 41, 17, 19, 20, 22, 22, 24, 25, 27
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 31 2003

Keywords

Examples

			n=25 -> '11001': a(25) = 1*11 + 1*7 + 0*5 + 0*3 + 1*2 = 20.
This sequence regarded as a triangle with rows of lengths  1, 2, 4, 8, 16, ...:
  2
  3, 5
  5, 7, 8, 10
  7, 9, 10, 12, 12, 14, 15, 17
  11, 13, 14, 16, 16, 18, 19, 21, 18, 20, 21, 23, 23, 25, 26, 28
  ... - _Philippe Deléham_, Jun 07 2015
		

Crossrefs

Other sequences that are built by replacing 2^k in the binary representation with other numbers: A029931 (natural numbers), A059590 (factorials), A022290 (Fibonacci).

Programs

  • Haskell
    a089625 n = f n 0 a000040_list where
       f 0 y _      = y
       f x y (p:ps) = f x' (y + p * r) ps where (x',r) = divMod x 2
    -- Reinhard Zumkeller, Oct 03 2012
    
  • Maple
    f:= proc(n) local L,j;
      L:= convert(n,base,2);
      add(L[i]*ithprime(i),i=1..nops(L))
    end proc:
    map(f, [$1..100]); # Robert Israel, Jun 08 2015
  • Mathematica
    a[n_] := With[{bb = IntegerDigits[n, 2]}, bb.Prime[Range[Length[bb], 1, -1]]];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 27 2021 *)
  • PARI
    a(n)=my(v=Vecrev(binary(n)),s,i);forprime(p=2,prime(#v),s+=v[i++]*p);s \\ Charles R Greathouse IV, Sep 23 2012
    
  • Python
    from sympy import nextprime
    def A089625(n):
        c, p = 0, 2
        while n:
            if n&1:
                c += p
            n >>=1
            p = nextprime(p)
        return c # Chai Wah Wu, Aug 09 2023

Formula

a(n) = Sum_{i=0..L(n)-1} b(i)*prime(i+1) where L=A070939 and b is defined by n = Sum_{i=0..L(n)-1} b(i)*2^i.
G.f.: 1/(1-x) * Sum_{k>=0} prime(k+1)*x^2^k/(1+x^2^k).
a(A000079(n)) = A000040(n+1).
a(A000225(n)) = A007504(n).
A000586(n) > 0 iff n = a(m) for some m.
a(n) = n for n = 9, 10, or 12.
a(n) = Sum_{k>=0} A030308(n,k)*A000040(k+1). - Philippe Deléham, Oct 15 2011
log n log log n << a(n) << log^2 n log log n. - Charles R Greathouse IV, Sep 23 2012
For n >= 8, a(n) <= m*(m+1)*(log(m)+log(log(m)))/2 where m = ceiling(log_2(n)). - Robert Israel, Jun 08 2015
a(n) = A001414(A019565(n)) = A008472(A019565(n)) for n>=1. - Flávio V. Fernandes, Feb 24 2025