A089625 Replace 2^k in binary expansion of n with (k+1)-st prime.
2, 3, 5, 5, 7, 8, 10, 7, 9, 10, 12, 12, 14, 15, 17, 11, 13, 14, 16, 16, 18, 19, 21, 18, 20, 21, 23, 23, 25, 26, 28, 13, 15, 16, 18, 18, 20, 21, 23, 20, 22, 23, 25, 25, 27, 28, 30, 24, 26, 27, 29, 29, 31, 32, 34, 31, 33, 34, 36, 36, 38, 39, 41, 17, 19, 20, 22, 22, 24, 25, 27
Offset: 1
Examples
n=25 -> '11001': a(25) = 1*11 + 1*7 + 0*5 + 0*3 + 1*2 = 20. This sequence regarded as a triangle with rows of lengths 1, 2, 4, 8, 16, ...: 2 3, 5 5, 7, 8, 10 7, 9, 10, 12, 12, 14, 15, 17 11, 13, 14, 16, 16, 18, 19, 21, 18, 20, 21, 23, 23, 25, 26, 28 ... - _Philippe Deléham_, Jun 07 2015
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Binary
- Eric Weisstein's World of Mathematics, Prime Partition.
- Index entries for sequences related to binary expansion of n
Crossrefs
Programs
-
Haskell
a089625 n = f n 0 a000040_list where f 0 y _ = y f x y (p:ps) = f x' (y + p * r) ps where (x',r) = divMod x 2 -- Reinhard Zumkeller, Oct 03 2012
-
Maple
f:= proc(n) local L,j; L:= convert(n,base,2); add(L[i]*ithprime(i),i=1..nops(L)) end proc: map(f, [$1..100]); # Robert Israel, Jun 08 2015
-
Mathematica
a[n_] := With[{bb = IntegerDigits[n, 2]}, bb.Prime[Range[Length[bb], 1, -1]]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 27 2021 *)
-
PARI
a(n)=my(v=Vecrev(binary(n)),s,i);forprime(p=2,prime(#v),s+=v[i++]*p);s \\ Charles R Greathouse IV, Sep 23 2012
-
Python
from sympy import nextprime def A089625(n): c, p = 0, 2 while n: if n&1: c += p n >>=1 p = nextprime(p) return c # Chai Wah Wu, Aug 09 2023
Formula
a(n) = Sum_{i=0..L(n)-1} b(i)*prime(i+1) where L=A070939 and b is defined by n = Sum_{i=0..L(n)-1} b(i)*2^i.
G.f.: 1/(1-x) * Sum_{k>=0} prime(k+1)*x^2^k/(1+x^2^k).
A000586(n) > 0 iff n = a(m) for some m.
a(n) = n for n = 9, 10, or 12.
log n log log n << a(n) << log^2 n log log n. - Charles R Greathouse IV, Sep 23 2012
For n >= 8, a(n) <= m*(m+1)*(log(m)+log(log(m)))/2 where m = ceiling(log_2(n)). - Robert Israel, Jun 08 2015