A089655 a(1)=1 and for n>=2 a(n) is the denominator of A(n) (see comment for A(n) definition).
1, 1, 4, 1, 4, 1, 8, 3, 8, 3, 4, 1, 4, 1, 16, 1, 48, 1, 12, 1, 4, 1, 8, 5, 8, 45, 4, 9, 4, 1, 32, 1, 32, 1, 12, 1, 12, 1, 8, 1, 8, 1, 4, 3, 4, 3, 16, 7, 80, 7, 20, 1, 36, 1, 72, 1, 8, 1, 4, 1, 4, 3, 64, 3, 64, 1, 4, 1, 4, 1, 24, 1, 24, 5, 4, 5, 4, 1, 16, 27, 16, 27, 4, 1, 4, 1, 8, 1, 24, 1, 12, 1, 4, 1
Offset: 1
Keywords
Crossrefs
Cf. A007947.
Formula
It appears that if p is prime and 2^p-1 and (2^p+1)/3 are both primes (i.e. p is in A000043 and in A000978), then a(2^p)=(4^p-1)/3 (converse doesn't hold).
For n>1 a(n)=(n^2-1)/rad(n^2-1) where rad(k) is the squarefree kernel of k; a(n)=A003557(n^2-1) - Benoit Cloitre, Oct 26 2004
Comments