cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A089669 a(n) = S3(n,1), where S3(n, t) = Sum_{k=0..n} k^t *(Sum_{j=0..k} binomial(n,j))^3.

Original entry on oeis.org

0, 8, 155, 2286, 29296, 344140, 3807774, 40327280, 413058080, 4120742808, 40242188170, 386141947972, 3650905945872, 34087726136672, 314844824466704, 2880757518523200, 26141327872575616, 235490128979282224, 2107598857648209954, 18752794473550896332
Offset: 0

Views

Author

N. J. A. Sloane, Jan 04 2004

Keywords

Crossrefs

Sequences of S3(n, t): A007403 (t=0), this sequence (t=1), A089670 (t=2), A089671 (t=3), A089672 (t=4).

Programs

  • Mathematica
    a[n_]:= a[n]= Sum[k*(Sum[Binomial[n, j], {j,0,k}])^3, {k,0,n}];
    Table[a[n], {n,0,40}] (* G. C. Greubel, May 26 2022 *)
  • SageMath
    @CachedFunction
    def A089669(n): return sum(k*(sum(binomial(n,j) for j in (0..k)))^3 for k in (0..n))
    [A089669(n) for n in (0..40)] # G. C. Greubel, May 26 2022

Formula

a(n) = Sum_{k=0..n} k * (Sum_{j=0..k} binomial(n,j))^3. - G. C. Greubel, May 26 2022
From Vaclav Kotesovec, May 27 2022: (Start)
Recurrence: (n-3)*(n-2)*(n-1)*(81*n^5 - 1080*n^4 + 5769*n^3 - 15146*n^2 + 19080*n - 9088)*a(n) = (n-3)*(1863*n^7 - 29457*n^6 + 195435*n^5 - 696271*n^4 + 1410606*n^3 - 1569664*n^2 + 815328*n - 103936)*a(n-1) - 12*(1134*n^8 - 20709*n^7 + 162279*n^6 - 708529*n^5 + 1865571*n^4 - 2976218*n^3 + 2709336*n^2 - 1189824*n + 153600)*a(n-2) + 64*(405*n^8 - 7101*n^7 + 53712*n^6 - 228226*n^5 + 590469*n^4 - 934993*n^3 + 856278*n^2 - 392944*n + 65280)*a(n-3) + 256*(n-4)*(n-2)*(2*n - 7)*(81*n^5 - 675*n^4 + 2259*n^3 - 3509*n^2 + 2180*n - 384)*a(n-4).
a(n) ~ 3 * n^2 * 8^(n-1) * (1 - 1/sqrt(Pi*n) + (5/3 - 1/(2*Pi*sqrt(3)))/n). (End)

A089671 a(n) = S3(n,3), where S3(n, t) = Sum_{k=0..n} k^t *(Sum_{j=0..k} binomial(n,j))^3.

Original entry on oeis.org

0, 8, 539, 16632, 364042, 6510160, 101817234, 1447146512, 19144522160, 239513659776, 2865559784050, 33052451375152, 369790434398988, 4031805422883680, 42996629236138928, 449821323139340160, 4627609615665499456, 46907404618252667392, 469254490696475078130
Offset: 0

Views

Author

N. J. A. Sloane, Jan 04 2004

Keywords

Crossrefs

Sequences of S3(n, t): A007403 (t=0), A089669 (t=1), A089670 (t=2), this sequence (t=3), A089672 (t=4).

Programs

  • Mathematica
    a[n_]:= a[n]= Sum[k^3*(Sum[Binomial[n, j], {j,0,k}])^3, {k,0,n}];
    Table[a[n], {n, 0, 40}] (* G. C. Greubel, May 26 2022 *)
  • SageMath
    def A089671(n): return sum(k^3*(sum(binomial(n,j) for j in (0..k)))^3 for k in (0..n))
    [A089671(n) for n in (0..40)] # G. C. Greubel, May 26 2022

Formula

a(n) = Sum_{k=0..n} k^3 *(Sum_{j=0..k} binomial(n,j))^3. - G. C. Greubel, May 26 2022
a(n) ~ 15 * 2^(3*n-6) * n^4 * (1 - 2/(5*sqrt(Pi*n)) + (2 - sqrt(3)/(5*Pi))/n). - Vaclav Kotesovec, May 27 2022

A089672 a(n) = S3(n,4), where S3(n, t) = Sum_{k=0..n} k^t *(Sum_{j=0..k} binomial(n,j))^3.

Original entry on oeis.org

0, 8, 1051, 47024, 1343372, 29595904, 549599246, 9039987264, 135800368320, 1901346478080, 25165027679242, 318105020914208, 3870088369412824, 45584244411107584, 522235732874214800, 5840992473138691072, 63970901725419781632, 687749464543749095424, 7273214936974305201570
Offset: 0

Views

Author

N. J. A. Sloane, Jan 04 2004

Keywords

Crossrefs

Sequences of S3(n, t): A007403 (t=0), A089669 (t=1), A089670 (t=2), A089671 (t=3), this sequence (t=4).

Programs

  • Maple
    S3:= (n, t) -> add(k^t*add(binomial(n, j), j = 0..k)^3, k = 0..n);
    seq(S3(n, 4), n = 0..40);
  • Mathematica
    a[n_]:= a[n]= Sum[k^4*(Sum[Binomial[n, j], {j,0,k}])^3, {k,0,n}];
    Table[a[n], {n, 0, 40}] (* G. C. Greubel, May 26 2022 *)
  • SageMath
    def A089672(n): return sum(k^4*(sum(binomial(n,j) for j in (0..k)))^3 for k in (0..n))
    [A089672(n) for n in (0..40)] # G. C. Greubel, May 26 2022

Formula

a(n) = Sum_{k=0..n} k^4 *(Sum_{j=0..k} binomial(n,j))^3. - G. C. Greubel, May 26 2022
a(n) ~ 31 * 2^(3*n - 5) * n^5 / 5 * (1 - 15/(62*sqrt(Pi*n)) + (75 - 5*sqrt(3)/Pi) / (31*n)). - Vaclav Kotesovec, May 27 2022
Showing 1-3 of 3 results.