A089799 Expansion of Jacobi theta function theta_2(q^(1/2))/q^(1/8).
2, 2, 0, 2, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Eric Weisstein's World of Mathematics, Jacobi Theta Functions
- I. J. Zucker, Further Relations Amongst Infinite Series and Products. II. The Evaluation of Three-Dimensional Lattice Sums, J. Phys. A: Math. Gen. 23, 117-132, 1990.
Programs
-
Mathematica
a[n_] := SeriesCoefficient[ EllipticTheta[2, 0, q^(1/2)]/q^(1/8), {q, 0, n}]; Table[a[n], {n, 0, 101}] (* Jean-François Alcover, Nov 12 2012 *)