A089818
T(n,k) = number of subsets of {1,..., n} containing exactly k primes, triangle read by rows, 0<=k
2, 2, 2, 2, 4, 2, 4, 8, 4, 0, 4, 12, 12, 4, 0, 8, 24, 24, 8, 0, 0, 8, 32, 48, 32, 8, 0, 0, 16, 64, 96, 64, 16, 0, 0, 0, 32, 128, 192, 128, 32, 0, 0, 0, 0, 64, 256, 384, 256, 64, 0, 0, 0, 0, 0, 64, 320, 640, 640, 320, 64, 0, 0, 0, 0, 0, 128, 640, 1280, 1280, 640, 128, 0, 0, 0, 0, 0
Offset: 1
Crossrefs
Cf. A000040.
Programs
-
Mathematica
T[n_, k_] := Binomial[PrimePi[n], k] 2^(n - PrimePi[n]); Table[T[n, k], {n, 1, 12}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Nov 04 2020 *)
Formula
T(n, k) = binomial(pi(n), k)*2^(n-pi(n)), with pi = A000720.
Comments