cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A123500 Signature permutation of a nonrecursive Catalan automorphism: rotate a binary tree right if possible, otherwise apply *A089859.

Original entry on oeis.org

0, 1, 3, 2, 8, 7, 4, 5, 6, 21, 22, 20, 17, 18, 9, 10, 11, 12, 13, 14, 15, 16, 19, 58, 59, 62, 63, 64, 57, 61, 54, 45, 46, 55, 48, 49, 50, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 51, 52, 53, 56, 60, 170, 171, 174, 175, 176
Offset: 0

Views

Author

Antti Karttunen, Oct 11 2006

Keywords

Comments

This automorphism is illustrated below, where letters A, B and C refer to arbitrary subtrees located on those nodes and () stands for an implied terminal node.
.A...B...............B...C............B...C...........C...B...
..\./.................\./..............\./.............\./....
...x...C....-->....A...x............()..x......-->......x..().
....\./.............\./..............\./.................\./..
.....x...............x................x...................x...
((a . b) . c) --> (a . (b . c)) / (() . (b . c)) --> ((c . b) . ())
This automorphism cannot be represented as a composition of two smaller nonrecursive automorphisms. Cf. A123503.

Crossrefs

Inverse: A123499. Row 264 of A089840. Variant of A074680.

A089407 Number of cycles in range [A014137(n-1)..A014138(n-1)] of permutation A089859/A089863.

Original entry on oeis.org

1, 1, 1, 2, 4, 11, 34, 109, 360, 1219, 4206, 14708, 52024, 185758, 668676, 2423821, 8839632, 32411555, 119410390, 441817020, 1641032536, 6116570954, 22870649308, 85764918130, 322476066224, 1215486652366, 4591838372044, 17383387914792
Offset: 0

Views

Author

Antti Karttunen, Nov 29 2003

Keywords

Comments

The number of orbits to which the corresponding automorphism(s) partitions the set of A000108(n) binary trees with n internal nodes.

Programs

  • Scheme
    (define (A089407 n) (if (< n 2) 1 (* (/ 1 4) (+ (A000108 n) (A089408 n) (if (= 3 (modulo n 4)) (* 2 (A000108 (/ (- n 3) 4))) 0)))))

Formula

a(0) = a(1) = 1, a(n) = (1/4)*(A000108(n) + A089408(n) + (if (n == 3 mod 4) 2*A000108((n-3)/4)))

A089840 Signature permutations of non-recursive Catalan automorphisms (i.e., bijections of finite plane binary trees, with no unlimited recursion down to indefinite distances from the root), sorted according to the minimum number of opening nodes needed in their defining clauses.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 2, 2, 1, 0, 5, 7, 3, 2, 1, 0, 6, 8, 4, 3, 2, 1, 0, 7, 6, 6, 5, 3, 2, 1, 0, 8, 4, 5, 4, 5, 3, 2, 1, 0, 9, 5, 7, 6, 6, 6, 3, 2, 1, 0, 10, 17, 8, 7, 4, 5, 6, 3, 2, 1, 0, 11, 18, 9, 8, 7, 4, 4, 4, 3, 2, 1, 0, 12, 20, 10, 12, 8, 7, 5, 5, 4, 3, 2, 1, 0, 13, 21, 14, 13, 12, 8, 7, 6
Offset: 0

Views

Author

Antti Karttunen, Dec 05 2003; last revised Jan 06 2009

Keywords

Comments

Each row is a permutation of natural numbers and occurs only once. The table is closed with regards to the composition of its rows (see A089839) and it contains the inverse of each (their positions are shown in A089843). The permutations in table form an enumerable subgroup of the group of all size-preserving "Catalan bijections" (bijections among finite unlabeled rooted plane binary trees). The order of each element is shown at A089842.

References

  • A. Karttunen, paper in preparation, draft available by e-mail.

Crossrefs

The first 22 rows of this table: row 0 (identity permutation): A001477, 1: A069770, 2: A072796, 3: A089850, 4: A089851, 5: A089852, 6: A089853, 7: A089854, 8: A072797, 9: A089855, 10: A089856, 11: A089857, 12: A074679, 13: A089858, 14: A073269, 15: A089859, 16: A089860, 17: A074680, 18: A089861, 19: A073270, 20: A089862, 21: A089863.
Other rows: row 83: A154125, row 169: A129611, row 183: A154126, row 251: A129612, row 253: A123503, row 258: A123499, row 264: A123500, row 3608: A129607, row 3613: A129605, row 3617: A129606, row 3655: A154121, row 3656: A154123,row 3702: A082354, row 3747: A154122, row 3748: A154124, row 3886: A082353, row 4069: A082351, row 4207: A089865, row 4253: A082352, row 4299: A089866, row 65167: A129609, row 65352: A129610, row 65518: A123495, row 65796: A123496, row 79361: A123492, row 1653002: A123695, row 1653063: A123696, row 1654023: A073281, row 1654249: A123498, row 1654694: A089864, row 1654720: A129604,row 1655089: A123497, row 1783367: A123713, row 1786785: A123714.
Tables A122200, A122201, A122202, A122203, A122204, A122283, A122284, A122285, A122286, A122287, A122288, A122289, A122290, A130400-A130403 give various "recursive derivations" of these non-recursive automorphisms. See also A089831, A073200.
Index sequences to this table, giving various subgroups or other important constructions: A153826, A153827, A153829, A153830, A123694, A153834, A153832, A153833.

A122204 Signature permutations of ENIPS-transformations of non-recursive Catalan automorphisms in table A089840.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 2, 2, 1, 0, 5, 8, 3, 2, 1, 0, 6, 7, 4, 3, 2, 1, 0, 7, 6, 6, 5, 3, 2, 1, 0, 8, 4, 5, 4, 5, 3, 2, 1, 0, 9, 5, 7, 6, 6, 6, 3, 2, 1, 0, 10, 22, 8, 7, 4, 5, 6, 3, 2, 1, 0, 11, 21, 9, 8, 7, 4, 4, 4, 3, 2, 1, 0, 12, 20, 14, 13, 8, 7, 5, 5, 4, 3, 2, 1, 0, 13, 17, 10, 12, 13
Offset: 0

Views

Author

Antti Karttunen, Sep 01 2006, Jun 06 2007

Keywords

Comments

Row n is the signature permutation of the Catalan automorphism which is obtained from the n-th nonrecursive automorphism in the table A089840 with the recursion scheme "ENIPS". In this recursion scheme the algorithm first recurses down to the right-hand side branch of the binary tree, before the given automorphism is applied at its root. This corresponds to the fold-right operation applied to the Catalan structure, interpreted e.g. as a parenthesization or a Lisp-like list, where (lambda (x y) (f (cons x y))) is the binary function given to fold, with 'f' being the given automorphism. The associated Scheme-procedures ENIPS and !ENIPS can be used to obtain such a transformed automorphism from any constructively or destructively implemented automorphism. Each row occurs only once in this table. Inverses of these permutations can be found in table A122203.
Because of the "universal property of folds", the recursion scheme ENIPS has a well-defined inverse, that is, it acts as a bijective mapping on the set of all Catalan automorphisms. Specifically, if g = ENIPS(f), then (f s) = (g (cons (car s) (g^{-1} (cdr s)))), that is, to obtain an automorphism f which gives g when subjected to recursion scheme ENIPS, we compose g with its own inverse applied to the cdr-branch of a S-expression (i.e. the right subtree in the context of binary trees). This implies that for any non-recursive automorphism f in the table A089840, ENIPS^{-1}(f) is also in A089840, which in turn implies that the rows of table A089840 form a (proper) subset of the rows of this table.

References

  • A. Karttunen, paper in preparation, draft available by e-mail.

Crossrefs

Cf. The first 22 rows of this table: row 0 (identity permutation): A001477, 1: A069768, 2: A057510, 3: A130342, 4: A130348, 5: A130346, 6: A130344, 7: A122282, 8: A082340, 9: A130354, 10: A130352, 11: A130350, 12: A057502, 13: A130364, 14: A130366, 15: A069770, 16: A130368, 17: A074686, 18: A130356, 19: A130358, 20: A130362, 21: A130360. Other rows: row 169: A089859, row 253: A123718, row 3608: A129608, row 3613: A072796, row 65167: A074679, row 79361: A123716.

A089863 Permutation of natural numbers induced by Catalan Automorphism *A089863 acting on the binary trees/parenthesizations encoded by A014486/A063171.

Original entry on oeis.org

0, 1, 3, 2, 7, 8, 6, 5, 4, 17, 18, 20, 21, 22, 16, 19, 15, 12, 13, 14, 11, 9, 10, 45, 46, 48, 49, 50, 54, 55, 57, 58, 59, 61, 62, 63, 64, 44, 47, 53, 56, 60, 43, 52, 40, 31, 32, 41, 34, 35, 36, 42, 51, 39, 30, 33, 37, 28, 23, 24, 38, 29, 25, 26, 27, 129, 130, 132, 133, 134
Offset: 0

Views

Author

Antti Karttunen, Nov 29 2003

Keywords

Comments

This automorphism effects the following transformation on the unlabeled rooted plane binary trees (letters A, B, C refer to arbitrary subtrees located on those nodes and () stands for an implied terminal node).
.A...B...............B...A
..\./.................\./
...x...C...-->.....C...x...............()..A.........A..()..
....\./.............\./.................\./....-->....\./...
.....x...............x...................x.............x....
((a . b) . c) --> (c . (b . a)) __ (() . a) ----> (a . ())
See the Karttunen OEIS-Wiki link for a detailed explanation of how to obtain a given integer sequence from this definition.

Crossrefs

Row 21 of A089840. Inverse of A089859. a(n) = A089850(A069770(n)) = A069770(A089854(n)). A089864 is the "square" of this permutation.
Number of cycles: A089407. Max. cycle size & LCM of all cycle sizes: A040002 (in each range limited by A014137 and A014138).

Extensions

A graphical description and constructive version of Scheme-implementation added by Antti Karttunen, Jun 04 2011

A089854 Involution of natural numbers induced by Catalan automorphism *A089854 acting on the binary trees/parenthesizations encoded by A014486/A063171.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 8, 7, 9, 10, 11, 12, 13, 14, 15, 19, 21, 22, 16, 20, 17, 18, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 51, 52, 56, 58, 59, 60, 62, 63, 64, 42, 43, 53, 57, 61, 44, 54, 45, 46, 47, 55, 48, 49, 50, 65, 66, 67, 68, 69, 70, 71, 72
Offset: 0

Views

Author

Antti Karttunen, Nov 29 2003

Keywords

Comments

This automorphism effects the following transformation on the unlabeled rooted plane binary trees (letters A, B, C refer to arbitrary subtrees located on those nodes and () stands for an implied terminal node).
.A...B...........B...A
..\./.............\./
...x...C....-->....x...C...............()..A.........()..A..
....\./.............\./.................\./....-->....\./...
.....x...............x...................x.............x....
((a . b) . c) -> ((b . a) . c) ___ (() . a) ---> (() . a)
In terms of S-expressions, this automorphism swaps caar and cdar of an S-exp if its first element is not ().
See the Karttunen OEIS-Wiki link for a detailed explanation of how to obtain a given integer sequence from this definition.

Crossrefs

a(n) = A089859(A069770(n)) = A069770(A089863(n)) = A057163(A089850(A057163(n))). Row 7 of A089840. Cf. A122282.
Number of cycles: A073191. Number of fixed points: A073190. Max. cycle size & LCM of all cycle sizes: A046698 (in each range limited by A014137 and A014138).

Extensions

Further comments and constructive implementation of Scheme-function (*A089854) added by Antti Karttunen, Jun 04 2011

A127302 Matula-Goebel signatures for plane binary trees encoded by A014486.

Original entry on oeis.org

1, 4, 14, 14, 86, 86, 49, 86, 86, 886, 886, 454, 886, 886, 301, 301, 301, 886, 886, 301, 454, 886, 886, 13766, 13766, 6418, 13766, 13766, 3986, 3986, 3986, 13766, 13766, 3986, 6418, 13766, 13766, 3101, 3101, 1589, 3101, 3101, 1849, 1849, 3101, 13766
Offset: 0

Views

Author

Antti Karttunen, Jan 16 2007

Keywords

Comments

This sequence maps A000108(n) oriented (plane) rooted binary trees encoded in range [A014137(n-1)..A014138(n-1)] of A014486 to A001190(n+1) non-oriented rooted binary trees, encoded by their Matula-Goebel numbers (when viewed as a subset of non-oriented rooted general trees). See also the comments at A127301.
If the signature-permutation of a Catalan automorphism SP satisfies the condition A127302(SP(n)) = A127302(n) for all n, then it preserves the non-oriented form of a binary tree. Examples of such automorphisms include A069770, A057163, A122351, A069767/A069768, A073286-A073289, A089854, A089859/A089863, A089864, A122282, A123492-A123494, A123715/A123716, A127377-A127380, A127387 and A127388.
A153835 divides natural numbers to same equivalence classes, i.e. a(i) = a(j) <=> A153835(i) = A153835(j) - Antti Karttunen, Jan 03 2013

Examples

			A001190(n+1) distinct values occur each range [A014137(n-1)..A014138(n-1)]. As an example, terms A014486(4..8) encode the following five plane binary trees:
........\/.....\/.................\/.....\/...
.......\/.......\/.....\/.\/.....\/.......\/..
......\/.......\/.......\_/.......\/.......\/.
n=.....4........5........6........7........8..
The trees in positions 4, 5, 7 and 8 all produce Matula-Goebel number A000040(1)*A000040(A000040(1)*A000040(A000040(1)*A000040(1))) = 2*A000040(2*A000040(2*2)) = 2*A000040(14) = 2*43 = 86, as they are just different planar representations of the one and same non-oriented tree. The tree in position 6 produces Matula-Goebel number A000040(A000040(1)*A000040(1)) * A000040(A000040(1)*A000040(1)) = A000040(2*2) * A000040(2*2) = 7*7 = 49. Thus a(4..8) = 86,86,49,86,86.
		

Crossrefs

Formula

a(n) = A127301(A057123(n)).
Can be also computed directly as a fold, see the Scheme-program. - Antti Karttunen, Jan 03 2013

A130401 Signature permutations of REDRONI-transformations of non-recursive Catalan automorphisms in table A089840.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 2, 2, 1, 0, 5, 7, 3, 2, 1, 0, 6, 8, 4, 3, 2, 1, 0, 7, 6, 6, 5, 3, 2, 1, 0, 8, 4, 5, 4, 5, 3, 2, 1, 0, 9, 5, 7, 6, 6, 6, 3, 2, 1, 0, 10, 17, 8, 7, 4, 5, 6, 3, 2, 1, 0, 11, 18, 9, 8, 7, 4, 4, 4, 3, 2, 1, 0, 12, 20, 14, 13, 8, 7, 5, 5, 4, 3, 2, 1, 0, 13, 21, 10, 12, 13
Offset: 0

Views

Author

Antti Karttunen, Jun 11 2007

Keywords

Comments

Row n is the signature permutation of the Catalan automorphism which is obtained from the n-th nonrecursive automorphism in the table A089840 with the recursion scheme "REDRONI". In this recursion scheme the given automorphism is applied at the root of binary tree after the algorithm has recursed down the cdr-branch (the right hand side tree in the context of binary trees), but before the algorithm recurses down to the car-branch (the left hand side of the binary tree, with respect to the new orientation of branches, possibly changed by the applied automorphism). I.e. this corresponds to the reversed depth-first in-order traversal of a Catalan structure, when it is interpreted as a binary tree. The associated Scheme-procedures REDRONI and !REDRONI can be used to obtain such a transformed automorphism from any constructively (or respectively: destructively) implemented automorphism. Each row occurs only once in this table and similar notes as given e.g. for table A122202 apply here, e.g. the rows of A089840 all occur here as well. This transformation has many fixed points besides the trivial identity automorphism *A001477: at least *A069770, *A089859 and *A129604 stay as they are. Inverses of these permutations can be found in table A130400.

Crossrefs

Cf. The first 22 rows of this table: row 0 (identity permutation): A001477, 1: A069770, 2: A073285, 3: A122342, 4: A130386, 5: A130384, 6: A130382, 7: A122349, 8: A082342, 9: A130392, 10: A130390, 11: A130388, 12: A071658, 13: A130930, 14: A130932, 15: A089859, 16: A130934, 18: A130394, 19: A130396, 20: A130928, 21: A130398. Other rows: row 1654694: A073280, row 1654720: A129604.
Cf. As a sequence differs from A130400 for the first time at n=80, where a(n)=14, while A130401(n)=11.

A089850 Involution of natural numbers induced by Catalan automorphism *A089850 acting on the binary trees/parenthesizations encoded by A014486/A063171.

Original entry on oeis.org

0, 1, 2, 3, 5, 4, 6, 7, 8, 12, 13, 11, 9, 10, 15, 14, 16, 17, 18, 19, 20, 21, 22, 31, 32, 34, 35, 36, 30, 33, 28, 23, 24, 29, 25, 26, 27, 40, 41, 39, 37, 38, 43, 42, 44, 45, 46, 47, 48, 49, 50, 52, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 87, 88, 90, 91, 92, 96, 97, 99
Offset: 0

Views

Author

Antti Karttunen, Nov 29 2003

Keywords

Comments

This automorphism effects the following transformation on the unlabeled rooted plane binary trees (letters A, B, C refer to arbitrary subtrees located on those nodes and () stands for an implied terminal node.)
...B...C...........C...B
....\./.............\./
.A...x....-->....A...x.................A..().........A...()..
..\./.............\./...................\./....-->....\./...
...x...............x.....................x.............x....
(a . (b . c)) -> (a . (c . b)) ____ (a . ()) ---> (a . ())
In terms of S-expressions, this automorphism swaps cadr and cddr of an S-exp if its length > 1.
Look at the example in A069770 to see how this will produce the given sequence of integers.

Crossrefs

a(n) = A069770(A089859(n)) = A089863(A069770(n)) = A057163(A089854(A057163(n))). Row 3 of A089840. Row 3771 of A122203 and row 3677 of A122204.
Number of cycles: A073191. Number of fixed points: A073190. Max. cycle size & LCM of all cycle sizes: A046698 (in each range limited by A014137 and A014138).

Extensions

The new mail-address, a graphical explanation and constructive implementation of Scheme-function (*A089850) added by Antti Karttunen, Jun 04 2011

A089864 Involution of natural numbers induced by the Catalan automorphism gma089864 acting on the binary trees/parenthesizations encoded by A014486/A063171.

Original entry on oeis.org

0, 1, 2, 3, 5, 4, 6, 8, 7, 12, 13, 11, 9, 10, 15, 14, 19, 21, 22, 16, 20, 17, 18, 31, 32, 34, 35, 36, 30, 33, 28, 23, 24, 29, 25, 26, 27, 40, 41, 39, 37, 38, 52, 51, 56, 58, 59, 60, 62, 63, 64, 43, 42, 53, 57, 61, 44, 54, 45, 46, 47, 55, 48, 49, 50, 87, 88, 90, 91, 92, 96, 97, 99
Offset: 0

Views

Author

Antti Karttunen, Nov 29 2003

Keywords

Comments

This "Catalan bijection" effects the following transformation on the binary trees (labels A,B,C,D refer to arbitrary subtrees located on those nodes and () stands for a terminal node.)
.A..B.C..D.....B..A.D..C.......B...C.......C...B.......A...B........B...A...
..\./.\./.......\./.\./.........\./.........\./.........\./..........\./....
...x...x....-->..x...x.......()..x..-->..()..x...........x..()...-->..x..().
....\./...........\./.........\./.........\./.............\./..........\./..
.....x.............x...........x...........x...............x............x...
i.e. we apply A069770 (that is, the corresponding automorphism) both to the left and right subtree of a binary tree and fix both the empty tree and the tree of one internal node.

Examples

			To obtain this signature permutation, we apply these transformations to the binary trees as encoded and ordered by A014486 and for each n, a(n) will be the position of the tree to which the n-th tree transforms to, as follows:
...................one tree of one internal........2 trees of 2 internal nodes
..empty tree.........(non-leaf) node.................................
........................................................\/.......\/..
......x......................\/........................\/.........\/.
n=....0......................1..........................2..........3.
a(n)=.0......................1..........................2..........3.(all these trees are fixed by this transformation)
however, the next 5 trees, with 3 internal nodes, in range [A014137[2], A014138[2]] = [4,8] change as follows:
........\/.....\/.................\/.....\/...
.......\/.......\/.....\/.\/.....\/.......\/..
......\/.......\/.......\_/.......\/.......\/.
n=.....4........5........6........7........8..
....................|.........................
....................|.........................
....................V.........................
......\/.........\/.............\/.........\/.
.......\/.......\/.....\/.\/.....\/.......\/..
......\/.......\/.......\_/.......\/.......\/.
a(n)=..5........4........6........8........7..
thus we obtain the first nine terms of this sequence: 0,1,2,3,5,4,6,8,7,...
		

Crossrefs

a(n) = A089859(A089859(n)) = A089863(A089863(n)). Row 1654694 of A089840.
Number of cycles: A089402. Number of fixed points: A089408. Max. cycle size & LCM of all cycle sizes: A046698 (in range [A014137(n-1)..A014138(n-1)] of this permutation).
Showing 1-10 of 20 results. Next