A089893 a(n) = (A001317(2n)-1)/4.
0, 1, 4, 21, 64, 321, 1092, 5461, 16384, 81921, 278532, 1392661, 4210752, 21053761, 71582788, 357913941, 1073741824, 5368709121, 18253611012, 91268055061, 275951648832, 1379758244161, 4691178030148, 23455890150741
Offset: 0
Keywords
Links
- Vladimir Shevelev, On Stephan's conjectures concerning Pascal triangle modulo 2, arXiv:1011.6083 [math.NT], 2010-2012.
Programs
-
Mathematica
a1317[n_] := Sum[2^k Mod[Binomial[n, k], 2] , {k, 0, n}]; a[n_] := (a1317[2n] - 1)/4; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Jan 18 2019 *)
-
PARI
a(n)=(sum(k=0,2*n+1,(binomial(2*n+1,k)%2)*2^k)-3)/12
-
Python
def A089893(n): return sum((bool(~(m:=n<<1)&m-k)^1)<
>2 # Chai Wah Wu, May 02 2023
Comments