A089913 Table T(n,k) = lcm(n,k)/gcd(n,k) = n*k/gcd(n,k)^2 read by antidiagonals (n >= 1, k >= 1).
1, 2, 2, 3, 1, 3, 4, 6, 6, 4, 5, 2, 1, 2, 5, 6, 10, 12, 12, 10, 6, 7, 3, 15, 1, 15, 3, 7, 8, 14, 2, 20, 20, 2, 14, 8, 9, 4, 21, 6, 1, 6, 21, 4, 9, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 11, 5, 3, 2, 35, 1, 35, 2, 3, 5, 11, 12, 22, 30, 36, 40, 42, 42, 40, 36, 30, 22, 12, 13, 6, 33, 10, 45
Offset: 1
Examples
T(6,10) = lcm(6,10)/gcd(6,10) = 30/2 = 15. 1, 2, 3, 4, 5, ... 2, 1, 6, 2, 10, ... 3, 6, 1, 12, 15, ... 4, 2, 12, 1, 20, ... 5, 10, 15, 20, 1, ... ...
Links
- Ivan Neretin, Table of n, a(n) for n = 1..5050
Programs
-
GAP
T:=Flat(List([1..13],n->List([1..n-1],k->Lcm(k,n-k)/Gcd(k,n-k)))); # Muniru A Asiru, Oct 24 2018
-
Mathematica
Flatten[Table[LCM[i, m - i]/GCD[i, m - i], {m, 15}, {i, m - 1}]] (* Ivan Neretin, Apr 27 2015 *)
-
PARI
A089913(n,k)=n*k/gcd(n,k)^2 \\ M. F. Hasler, Dec 06 2019
Comments