A089942 Inverse binomial matrix applied to A039599.
1, 0, 1, 1, 1, 1, 1, 3, 2, 1, 3, 6, 6, 3, 1, 6, 15, 15, 10, 4, 1, 15, 36, 40, 29, 15, 5, 1, 36, 91, 105, 84, 49, 21, 6, 1, 91, 232, 280, 238, 154, 76, 28, 7, 1, 232, 603, 750, 672, 468, 258, 111, 36, 8, 1, 603, 1585, 2025, 1890, 1398, 837, 405, 155, 45, 9, 1, 1585, 4213, 5500
Offset: 0
Examples
Triangle begins 1, 0, 1, 1, 1, 1, 1, 3, 2, 1, 3, 6, 6, 3, 1, 6, 15, 15, 10, 4, 1, 15, 36, 40, 29, 15, 5, 1, 36, 91, 105, 84, 49, 21, 6, 1, 91, 232, 280, 238, 154, 76, 28, 7, 1 Production matrix is 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Paul Barry and Aoife Hennessy, Four-term Recurrences, Orthogonal Polynomials and Riordan Arrays, Journal of Integer Sequences, 2012, article 12.4.2. - From _N. J. A. Sloane_, Sep 21 2012
- J. A. R. Coope, R. F. Snider, and F. R. McCourt, Irreducible Cartesian Tensors, The Journal of Chemical Physics, vol 43, no 7, 1965.
- Emeric Deutsch, Luca Ferrari, and Simone Rinaldi, Production Matrices, Advances in Applied Mathematics, 34 (2005) pp. 101-122.
- Toufik Mansour and Mark Shattuck, Enumeration of Catalan and smooth words according to capacity, Integers (2025) Vol. 25, Art. No. A5. See p. 29.
- Donatella Merlini, Douglas G. Rogers, Renzo Sprugnoli, and M. Cecilia Verri, On some alternative characterizations of Riordan arrays, Canad J. Math., 49 (1997), 301-320.
- Yidong Sun and Luping Ma, Minors of a class of Riordan arrays related to weighted partial Motzkin paths, Eur. J. Comb. (2014) Vol. 39, 157-169. See Table 2.2.
Crossrefs
Row sums give A002426 (central trinomial coefficients).
Programs
-
Maple
T:= (n,k) -> simplify(GegenbauerC(n-k,-n+1,-1/2)-GegenbauerC(n-k-1,-n+1,-1/2)): for n from 1 to 9 do seq(T(n,k), k=1..n) od; # Peter Luschny, May 12 2016 # Or by recurrence: T := proc(n, k) option remember; if n = k then 1 elif k < 0 or n < 0 or k > n then 0 elif k = 0 then T(n-1, 1) else T(n-1, k-1) + T(n-1, k) + T(n-1, k+1) fi end: for n from 0 to 9 do seq(T(n, k), k = 0..n) od; # Peter Luschny, May 25 2021
-
Mathematica
T[n_, k_] := GegenbauerC[n - k, -n + 1, -1/2] - GegenbauerC[n - k - 1, -n + 1, -1/2]; Table[T[n, k], {n,1,10}, {k,1,n}] // Flatten (* G. C. Greubel, Feb 28 2017 *)
Formula
G.f.: (1+z-q)/[(1+z)(2z-t+tz+tq)], where q = sqrt(1-2z-3z^2).
Sum_{k>=0} T(m,k)*T(n,k) = T(m+n,0) = A005043(m+n). - Philippe Deléham, Mar 22 2007
Sum_{k=0..n} T(n,k)*(2k+1) = 3^n. - Philippe Deléham, Mar 22 2007
Sum_{k=0..n} T(n,k)*2^k = A112657(n). - Philippe Deléham, Apr 01 2007
T(n,2k) + T(n,2k+1) = A109195(n,k). - Philippe Deléham, Nov 11 2008
T(n,k) = GegenbauerC(n-k,-n+1,-1/2) - GegenbauerC(n-k-1,-n+1,-1/2) for 1 <= k <= n. - Peter Luschny, May 12 2016
Extensions
Edited by Emeric Deutsch, Mar 04 2004
Comments