cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089975 Array read by ascending antidiagonals: T(n,k) is the number of n-letter words from a k-letter alphabet such that no letter appears more than twice.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 0, 4, 3, 1, 0, 0, 6, 9, 4, 1, 0, 0, 6, 24, 16, 5, 1, 0, 0, 0, 54, 60, 25, 6, 1, 0, 0, 0, 90, 204, 120, 36, 7, 1, 0, 0, 0, 90, 600, 540, 210, 49, 8, 1, 0, 0, 0, 0, 1440, 2220, 1170, 336, 64, 9, 1, 0, 0, 0, 0, 2520, 8100, 6120, 2226, 504, 81, 10, 1
Offset: 0

Views

Author

Paul Boddington, Nov 17 2003

Keywords

Examples

			Array begins:
  1, 1, 1,  1,    1,     1,      1,      1,       1,       1,       1, ...
  0, 1, 2,  3,    4,     5,      6,      7,       8,       9,      10, ...
  0, 1, 4,  9,   16,    25,     36,     49,      64,      81,     100, ...
  0, 0, 6, 24,   60,   120,    210,    336,     504,     720,     990, ...
  0, 0, 6, 54,  204,   540,   1170,   2226,    3864,    6264,    9630, ...
  0, 0, 0, 90,  600,  2220,   6120,  14070,   28560,   52920,   91440, ...
  0, 0, 0, 90, 1440,  8100,  29520,  83790,  201600,  430920,  842400, ...
  0, 0, 0,  0, 2520, 25200, 128520, 463680, 1345680, 3356640, 7484400, ...
  ... - _Robert FERREOL_, Nov 03 2017
		

Crossrefs

T(1, k) = A001477(k); T(2, k) = A000290(k); T(3, k) = A007531(k); T(n, n) = A012244(n); T(n, n+1) = A036774(n); T(n, n+2) = A003692(n+1); T(2*n, n) = A000680(n); sum(T(n, k), n=0..2*k) = A003011(k); sum(T(r, n-r), r=0..n) = A089976(n).
See A141765 for an irregular triangle version : T(n,k)=A141765(k,n) for n <= 2k.

Programs

  • Maple
    T:=(n,k)->add(n!*k!/(n-2*i)!/i!/(k-n+i)!/2^i,i=max(0,n-k)..n/2):
    or
    T:=proc(n,k) option remember :if n=0 then 1 elif n=1 then k elif k=0 then 0 else T(n, k-1)+n*T(n-1, k-1)+binomial(n,2)*T(n-2, k-1) fi end:
    or
    T:=(n,k)-> n!*coeff((1 + x + x^2/2)^k, x,n):
    seq(seq(T(n-k,k),k=0..n),n=0..20);
    # Robert FERREOL, Nov 07 2017
  • Mathematica
    T[n_, k_] := Sum[n!*k!/(2^i*(n - 2 i)!*(k - n + i)!*i!), {i, Max[0, n - k], Floor[n/2]}];
    Table[T[n-k , k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 05 2017, after Robert FERREOL *)
  • Python
    from math import factorial as f
    def T(n,k):
        return sum(f(n)*f(k)//f(n-2*i)//f(i)//f(k-n+i)//2**i for i in range(max(0,n-k),n//2+1))
    [T(n-k,k) for n in range(21) for k in range(n+1)]
    # Robert FERREOL, Oct 17 2017

Formula

T(n, k) = T(n, k-1) + n*T(n-1, k-1) + binomial(n, 2)*T(n-2, k-1) for n >= 2 and k >= 1.
T(n, k) = Sum_{i=max(0,n-k)..floor(n/2)} n!*k!/(2^i*(n-2*i)!*(k-n+i)!*i!). - Robert FERREOL, Oct 30 2017
T(n,k) = (-1)^n*n!*2^(-n/2)*GegenbauerC(n, -k, 1/sqrt(2)) for k >= n. - Robert Israel, Nov 08 2017
G.f.: Sum({n>=0} T(n,k)x^n)=n!(1 + x + x^2/2)^k. See Walsh link. - Robert FERREOL, Nov 14 2017