A090014 Permanent of (0,1)-matrix of size n X (n+d) with d=4 and n-1 zeros not on a line.
5, 25, 155, 1135, 9545, 90445, 952175, 11016595, 138864365, 1893369505, 27756952355, 435287980375, 7269934161905, 128812336516885, 2413131201408695, 47652865538001595, 989254278781162325
Offset: 1
References
- Brualdi, Richard A. and Ryser, Herbert J., Combinatorial Matrix Theory, Cambridge NY (1991), Chapter 7.
Links
- Indranil Ghosh, Table of n, a(n) for n = 1..445
- Seok-Zun Song et al., Extremes of permanents of (0,1)-matrices, Lin. Algebra and its Applic. 373 (2003), pp. 197-210.
Crossrefs
Programs
-
Mathematica
f[x_] := x*HypergeometricPFQ[{1, 5}, {}, x/(x+1)]/(x+1); Total /@ Partition[ CoefficientList[ Series[f[x], {x, 0, 18}], x], 2, 1] // Rest (* Jean-François Alcover, Nov 12 2013, after A001909 and Mark van Hoeij *) t={5,25};Do[AppendTo[t,(n+3)*t[[-1]]+(n-2)*t[[-2]]],{n,3,17}];t (* Indranil Ghosh, Feb 21 2017 *)
Formula
a(n) = (n+3)*a(n-1) + (n-2)*a(n-2), a(1)=5, a(2)=25.
a(n) ~ exp(-1) * n! * n^4 / 24. - Vaclav Kotesovec, Nov 30 2017
Extensions
Corrected by Jaap Spies, Jan 26 2004