A090022 Number of distinct lines through the origin in the n-dimensional lattice of side length 6.
0, 1, 25, 253, 2065, 15541, 112825, 804973, 5692705, 40071781, 281367625, 1972955293, 13823978545, 96820307221, 677949854425, 4746473419213, 33228592555585, 232613204977861, 1628344491013225, 11398619145204733
Offset: 0
Examples
a(2) = 25 because in 2D the lines have slope 0, 1/6, 5/6, 1/5, 2/5, 3/5, 4/5, 1/4, 3/4, 1/3, 2/3, 1/2, 1 and their reciprocals.
Links
- Gennady Eremin, Table of n, a(n) for n = 0..500
Crossrefs
Programs
-
Magma
[7^n-4^n-3^n+1: n in [0..20]]; // Wesley Ivan Hurt, Mar 06 2022
-
Mathematica
Table[7^n - 4^n - 3^n + 1, {n, 0, 25}]
-
Python
[7**n-4**n-3**n+1 for n in range(20)] # Gennady Eremin, Mar 06 2022
Formula
a(n) = 7^n - 4^n - 3^n + 1.
O.g.f.: 1/(-1+3*x) + 1/(-1+4*x) - 1/(-1+x) - 1/(-1+7*x). - R. J. Mathar, Feb 26 2008
Comments