A090045 Number of equivalence classes of reflexive polytopes in dimension n.
1, 16, 4319, 473800776
Offset: 1
Links
- Ross Altman, James Gray, Yang-Hui He, Vishnu Jejjala, Brent D. Nelson. A Calabi-Yau database: threefolds constructed from the Kreuzer-Skarke list, Journal of High Energy Physics, 2015, doi://10.1007/JHEP02(2015)158 .
- C. F. Doran and U. A. Whitcher, From polygons to string theory, Math. Mag., 85 (2012), 343-359.
- Amihay Hanany and Rak-Kyeong Seong, Brane Tilings and Reflexive Polygons, arXiv:1201.2614 [hep-th], 2012.
- YH He, V Jejjala, L Pontiggia, Patterns in Calabi--Yau Distributions, arXiv preprint arXiv:1512.01579 [hep-th], 2015.
- Yang-Hui He, Rak-Kyeong Seong, Shing-Tung Yau, Calabi-Yau Volumes and Reflexive Polytopes, arXiv:1704.03462 [hep-th], 2017.
- M. Kreuzer, Reflexive polyhedra in 4 dimensions
- M. Kreuzer and H. Skarke, Complete classification of reflexive polyhedra in four dimensions, arXiv:hep-th/0002240, 2000.
- J. C. Lagarias and G. M. Ziegler, Bounds for lattice polytopes containing a fixed number of interior points in a sublattice, Canad. J. Math. 43(1991), 1022-1035.
- Luca Terzio Pontiggia, Computational methods in string and field theory, doctoral dissertation, Univ. of the Witwatersrand, Johannesburg, 2018.
- A. Tsuchiya, The delta-vectors of reflexive polytopes and of the dual polytopes, arXiv preprint arXiv:1411.2122 [math.CO], 2014, 2015.
- G. M. Ziegler, Questions about polytopes, pp. 1195-1211 of Mathematics Unlimited - 2001 and Beyond, ed. B. Engquist and W. Schmid, Springer-Verlag, 2001.
Crossrefs
See A140296 for the regular Fano polytopes.
Extensions
Definition corrected by Jonathan Sondow, Dec 08 2012
Comments