cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A175475 Decimal expansion of the Dickman function evaluated at 1/3.

Original entry on oeis.org

0, 4, 8, 6, 0, 8, 3, 8, 8, 2, 9, 1, 1, 3, 1, 5, 6, 6, 9, 0, 7, 1, 8, 3, 0, 3, 9, 3, 4, 3, 4, 0, 7, 4, 2, 1, 3, 5, 4, 3, 2, 9, 5, 8, 0, 4, 7, 8, 1, 4, 0, 5, 4, 2, 3, 1, 6, 8, 0, 5, 2, 8, 5, 0, 5, 1, 4, 8, 8, 2, 3, 5, 7, 3, 5, 9, 3, 2, 4, 7, 2, 0, 0, 4, 0, 9, 1, 2, 9, 3, 3, 7, 1, 1, 6, 7, 7, 0, 7, 9, 6, 8, 0, 4, 4
Offset: 0

Views

Author

R. J. Mathar, May 25 2010

Keywords

Comments

Density of the cube root-smooth numbers, see A090081. - Charles R Greathouse IV, Jul 14 2014

Examples

			F(1/3) = 0.04860838829113156690718...
		

Crossrefs

Programs

  • Mathematica
    N[1 - Log[3] + Log[3]^2/2 - Pi^2/12 + PolyLog[2, 1/3], 105] // RealDigits // First // Prepend[#, 0]& (* Jean-François Alcover, Feb 05 2013 *)
  • PARI
    1-log(3)+log(3)^2/2-Pi^2/12+polylog(2,1/3) \\ Charles R Greathouse IV, Jul 14 2014

Formula

Equals 1 - log(3) + log^2(3)/2 - Pi^2/12 + Sum_{n>=1} 1/(n^2*3^n), where Sum_{n>=1} 1/(n^2*3^n) = 0.3662132299770634876167462976642627638...

A307907 a(n) is the greatest k such that p^k <= n for any prime factor p of n.

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 3, 1, 1, 2, 1, 5, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 3, 2, 2, 1, 1, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 2, 1, 1, 1, 1, 2, 4, 1, 1, 2, 1, 1, 1, 1
Offset: 2

Views

Author

Rémy Sigrist, May 05 2019

Keywords

Examples

			For n = 12:
- the prime factors of 12 are 2 and 3,
- 2^2 < 3^2 <= 12 < 3^3,
- hence a(12) = 2.
		

Crossrefs

Programs

  • Mathematica
    Array[If[PrimeQ@ #, 1, Floor@ Log[FactorInteger[#][[-1, 1]], #]] &, 105, 2] (* Michael De Vlieger, May 08 2019 *)
  • PARI
    a(n) = my (f=factor(n)); logint(n, f[#f~, 1])
    
  • Python
    from sympy import integer_log, primefactors
    def A307907(n): return integer_log(n,max(primefactors(n)))[0] # Chai Wah Wu, Oct 12 2024

Formula

a(n) = floor(log(n)/log(A006530(n))).
a(p^k) = k for any prime number p and any k > 0.
0 <= a(n^k) - k*a(n) < k for any n > 1 and any k > 0.
a(n) = 1 iff n belongs to A064052.
a(n) > 1 iff n belongs to A048098.
a(n) > 2 iff n belongs to A090081.
Showing 1-2 of 2 results.