cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A090081 Cube root-smooth numbers: numbers k whose largest prime factor does not exceed the cube root of k.

Original entry on oeis.org

1, 8, 16, 27, 32, 36, 48, 54, 64, 72, 81, 96, 108, 125, 128, 135, 144, 150, 160, 162, 180, 192, 200, 216, 225, 240, 243, 250, 256, 270, 288, 300, 320, 324, 343, 350, 360, 375, 378, 384, 392, 400, 405, 420, 432, 441, 448, 450, 480, 486, 490, 500, 504, 512, 525
Offset: 1

Views

Author

Labos Elemer, Nov 21 2003

Keywords

Comments

What is the asymptotic growth of this sequence?
Answer: a(n) ~ k*n, where k = 1/A175475. That is, about 4.8% of numbers are in this sequence. - Charles R Greathouse IV, Jul 14 2014

Examples

			378 = 2 * 3^3 * 7 is a term of the sequence since 7 < 7.23... = 378^(1/3).
		

Crossrefs

Programs

  • Maple
    filter:= n ->
    evalb(max(seq(f[1],f=ifactors(n)[2]))^3 <= n):
    select(filter, [$1..1000]); # Robert Israel, Jul 14 2014
  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]]; ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}]; lf[x_] := Length[FactorInteger[x]]; ma[x_] := Max[ba[x]]; Do[If[ !Greater[ma[n], gy=n^(1/3)//N]&&!PrimeQ[n], Print[n(*, {gy, ma[n]}*)]], {n, 1, 1000}]
    Select[Range[1000], (FactorInteger[#][[-1,1]])^3 <= # &] (* T. D. Noe, Sep 14 2011 *)
    Select[Range[1000],FactorInteger[#][[-1,1]]<=CubeRoot[#]&] (* Harvey P. Dale, Jun 30 2025 *)
  • PARI
    is(n)=my(f=factor(n)[,1]);f[#f]^3<=n \\ Charles R Greathouse IV, Sep 14 2011
    
  • Python
    from sympy import primefactors
    def ok(n):
        if n==1 or max(primefactors(n))**3<=n: return True
        else: return False
    print([n for n in range(1, 1001) if ok(n)]) # Indranil Ghosh, Apr 23 2017

Formula

Solutions to A006530(n) <= n^(1/3).

A245238 Decimal expansion of the Dickman function evaluated at 1/4.

Original entry on oeis.org

0, 0, 4, 9, 1, 0, 9, 2, 5, 6, 4, 7, 7, 6, 0, 8, 3, 2, 3, 5, 2, 7, 3, 9, 1, 5, 0, 9, 2, 3, 6, 1, 5, 1, 8, 6, 0, 3, 2, 4, 8, 4, 2, 9, 7, 4, 1, 7, 6, 9, 2, 9, 4, 5, 9, 7, 7, 9, 6, 1, 6, 5, 7, 5, 2, 8, 0, 3, 0, 6, 3, 1
Offset: 0

Views

Author

Keywords

Comments

Density of the fourth-root-smooth numbers.

Examples

			F(1/4) = 0.00491092564776083235273915092361518603248429741769294597796...
		

References

  • Karl Dickman, On the frequency of numbers containing prime factors of a certain relative magnitude, Arkiv för Matematik, Astronomi och Fysik 22A 10 (1930), pp. 1-14.

Crossrefs

F(1/2) = A244009, F(1/3) = A175475.

Programs

  • Mathematica
    RealDigits[1-Log[4]+PolyLog[2, 1/4]+2*Log[2]^2-Pi^2/12-PolyLog[3, 1/4]-PolyLog[2, 1/4]*Log[2]-2/3*Log[2]^3+13*Zeta[3]/24,10,100,-1][[1]] (* Vaclav Kotesovec, Jul 15 2014 *)
  • PARI
    1-log(4)+polylog(2,1/4)+2*log(2)^2-Pi^2/12-polylog(3,1/4)-polylog(2,1/4)*log(2)-2/3*log(2)^3+13*zeta(3)/24

A258945 Decimal expansion of Dickman's constant C_4.

Original entry on oeis.org

0, 6, 7, 6, 4, 5, 2, 0, 2, 1, 0, 6, 9, 4, 6, 1, 3, 6, 9, 6, 9, 7, 5, 0, 2, 3, 1, 0, 3, 3, 8, 2, 2, 9, 9, 3, 9, 2, 3, 4, 2, 1, 9, 3, 4, 4, 9, 4, 9, 2, 0, 4, 3, 1, 7, 3, 0, 1, 8, 6, 0, 1, 3, 4, 6, 5, 2, 5, 7, 5, 3, 8, 5, 1, 1, 6, 8, 5, 5, 5, 2, 9, 0, 9, 8, 0, 6, 8, 5, 2, 2, 4, 6, 3, 5, 6, 2, 4, 4, 8, 2, 7, 0, 6
Offset: 0

Views

Author

Jean-François Alcover, Jun 15 2015

Keywords

Examples

			0.067645202106946136969750231033822993923421934494920431730186...
		

Crossrefs

Programs

  • Mathematica
    digits = 103; C4 = NIntegrate[(Log[x/(2*x+1)]*PolyLog[2, x] + (1/2)*Log[x]^2* PolyLog[1, -2*x])/(x*(x+1)), {x, 0, 1/2}, WorkingPrecision -> digits+5] + 3*PolyLog[4, 1/2] - 3/8 *PolyLog[4, 1/4] - 3/4* Log[2]*PolyLog[3, 1/4] + (Pi^2 - 9*Log[2]^2)/12*PolyLog[2, 1/4] + 21*Log[2]*Zeta[3]/8 + Pi^2*(Log[2]^2/24) - Pi^2*Log[2]*(Log[3]/6) + Log[2]^3*Log[3]/2 - 5*Log[2]^4/8; Join[{0}, RealDigits[C4, 10, digits] // First]
  • Python
    from mpmath import mp, log, polylog, zeta, pi, quad
    mp.dps=104
    f=lambda x: (log(x/(2*x+1))*polylog(2, x) + (1/2)*log(x)**2*polylog(1, -2*x))/(x*(x+1))
    I=quad(f, [0, 1/2]) + 3*polylog(4, 1/2) - 3/8*polylog(4, 1/4) - 3/4*log(2) * polylog(3, 1/4) +(pi**2 - 9*log(2)**2)/12*polylog(2, 1/4) + 21*log(2)*zeta(3)/8 + pi**2*(log(2)**2/24) - pi**2*log(2)*(log(3)/6) + log(2)**3*log(3)/2 - 5*log(2)**4/8
    print([int(z) for z in list(str(I)[2:-1])]) # Indranil Ghosh, Jul 03 2017

Formula

C_1 = 0, C_2 = -Pi^2/12, C_3 = -zeta(3)/3.
C_4 = Integral_{0..1/2} (log(x/(2*x+1))*polylog(2, x) + (1/2)*log(x)^2*polylog(1, -2*x))/(x*(x+1)) dx + 3*polylog(4, 1/2) - 3/8*polylog(4, 1/4) - 3/4*log(2) * polylog(3, 1/4) +(Pi^2 - 9*log(2)^2)/12*polylog(2, 1/4) + 21*log(2)*zeta(3)/8 + Pi^2*(log(2)^2/24) - Pi^2*log(2)*(log(3)/6) + log(2)^3*log(3)/2 - 5*log(2)^4/8.
Also (conjecturally) equals Pi^4/1440.

A309638 Nearest integer to 1/F(1/x), where F(x) is the Dickman function.

Original entry on oeis.org

1, 3, 21, 204, 2819, 50891, 1143423, 30939931, 984011503, 36098843631, 1504934136432, 70436763188525, 3664092112471681, 210056231435360023, 13175390260774094846, 898537704166507324228, 66265550246147429710863, 5259409287834480235626661, 447341910388133084658686126, 40620967386538406952534036284
Offset: 1

Views

Author

Jeremy Tan, Aug 11 2019

Keywords

Comments

The asymptotic density of the n-th-root-smooth numbers is approximately 1/a(n).
Van de Lune and Wattel show a(n) >= A001147(n) for n >= 1.

Examples

			The asymptotic density of fifth-root-smooth numbers is F(1/5) = 0.000354724700... = 1/2819.08758..., so a(5) = 2819.
		

Crossrefs

F(1/2) = A244009; F(1/3) = A175475; F(1/4) = A245238.

Formula

1/F(1/x) = 1/rho(x), where rho(x) satisfies rho'(x) = -rho(x-1)/x and rho(x) = 1 for x <= 1. rho(x) may be computed to arbitrary precision by the method of Marsaglia, Zaman and Marsaglia (implemented in the Python program in Links).
a(n) ~ exp(Ei(t) - n*t) / (t * sqrt(2*Pi*n)), where Ei is the exponential integral and t is the positive root of exp(t) - n*t - 1 (van de Lune and Wattel).

A344475 Decimal expansion of the value of the Dickman function at phi + 1 = phi^2 = (3 + sqrt(5))/2 (A104457).

Original entry on oeis.org

1, 0, 4, 6, 4, 7, 7, 6, 3, 7, 7, 3, 1, 6, 4, 8, 5, 3, 8, 5, 4, 1, 6, 9, 7, 2, 7, 7, 1, 8, 1, 9, 3, 3, 9, 4, 8, 2, 4, 1, 4, 2, 6, 9, 1, 1, 5, 7, 2, 9, 7, 9, 8, 7, 7, 1, 9, 7, 0, 9, 0, 6, 8, 0, 7, 2, 4, 6, 6, 8, 6, 3, 3, 1, 0, 1, 9, 8, 1, 7, 6, 7, 7, 7, 6, 7, 2, 7, 9, 8, 7, 7, 8, 9, 6, 5, 5, 7, 4, 5, 3, 0, 8, 7, 9
Offset: 0

Views

Author

Amiram Eldar, May 20 2021

Keywords

Examples

			0.10464776377316485385416972771819339482414269115729...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 286.

Crossrefs

Programs

  • Mathematica
    RealDigits[1 - 2*Log[GoldenRatio] + Log[GoldenRatio]^2 - Pi^2/60, 10, 100][[1]]
  • PARI
    my(phi = quadgen(5)); 1 - 2*log(phi) + log(phi)^2 - Pi^2/60 \\ Amiram Eldar, Jan 09 2025

Formula

Equals 1 - 2*log(phi) + log(phi)^2 - Pi^2/60 (Moree, 1995).

Extensions

More terms from Amiram Eldar, Jan 09 2025
Showing 1-5 of 5 results.