A090100 Numbers n such that n and the four successive integers produce primes if substituted for x in the polynomial 5x^2+5x+1. See A090562, A090563. Terms show that longer similar chains also exist.
1, 2, 3, 13, 266, 321, 322, 323, 344, 641, 1324, 5436, 16700, 16701, 19857, 19858, 28151, 28152, 30648, 31253, 32045, 45773, 48710, 50923, 52397, 57357, 57358, 63879, 63880, 63881, 72615, 73164, 73165, 78785, 81831, 87640, 87641, 91116
Offset: 1
Programs
-
Mathematica
Do[s=5*n^2+5*n+1;s1=5*(n+1)^2+5*(n+1)+1; s2=5*(n+2)^2+5*(n+2)+1;s3=5*(n+3)^2+5*(n+3)+1; s4=5*(n+4)^2+5*(n+4)+1; If[PrimeQ[s]&&PrimeQ[s1]&&PrimeQ[s2]&& PrimeQ[s3]&&PrimeQ[s4], Print[n]], {n, 1, 100000}] SequencePosition[Table[If[PrimeQ[5n^2+5n+1],1,0],{n,100000}],{1,1,1,1,1}][[;;,1]] (* Harvey P. Dale, May 04 2024 *)
Comments