cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090116 a(n)=x is the least number such that x^2 is "surrounded" by two closest primes, prevprime(x^2) and nextprime(x^2), whose difference nextprime - prevprime = 2n.

Original entry on oeis.org

2, 3, 5, 19, 12, 25, 11, 44, 23, 30, 57, 41, 50, 102, 76, 104, 100, 149, 175, 159, 348, 276, 305, 397, 461, 189, 345, 1059, 437, 820, 833, 1002, 509, 1283, 822, 1099, 729, 1090, 693, 2710, 1110, 1284, 3563, 1823, 1370, 4332, 3771, 1380, 4394, 2160, 2011, 1498
Offset: 1

Views

Author

Labos Elemer, Jan 09 2004

Keywords

Comments

a(14) > 16*10^6. - David A. Corneth, Jun 12 2017

Examples

			n=5: a(5)=12 because the primes closest to 12^2 = 144 are {139,149} whose difference 149 - 139 = 10 = 2n and 144 is the smallest square with this property;
n=1: a(1)=2 because 2^2=4 is surrounded by primes {3,5} with difference 5 - 3 = 2 = 2n.
		

Crossrefs

Programs

  • Mathematica
    de[x_] := Prime[PrimePi[x]+1]-Prime[PrimePi[x]]; de[1] = 0; t=Table[de[w^2], {w, 1, 50000}]; mt=Table[Min[Flatten[Position[t, 2*j]]], {j, 1, 100}]
  • PARI
    first(n) = my(todo = n, res = vector(n), p, x = 2); while(todo > 0, m = nextprime(x^2) - precprime(x^2); if(m <= 2*n, if(res[m/2]==0, res[m/2] = x; todo--)); x++); res \\ David A. Corneth, Jun 12 2017