cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090125 a(n) is the least positive integer such that nextprime(a(n)^n) - prevprime(a(n)^n) = 4.

Original entry on oeis.org

5, 3, 2, 2, 411, 195, 2, 392, 141, 105, 1161, 909, 69, 3243, 171, 370, 1659, 165, 26289, 1065, 8541, 19593, 43521, 1323, 84651, 25767, 25641, 7029, 63009, 693, 231, 957, 2601, 7137, 368265, 14769, 8169, 13071, 23679, 45, 13875, 6693, 136611, 34869, 55725, 4887, 231, 1935, 730071, 10305
Offset: 1

Views

Author

Labos Elemer, Jan 12 2004

Keywords

Examples

			with q-p=4,q,p are primes:
n=1:a(1)=5 because {p=3,a(1)^1=5,q=5};
n=7:a(7)=2 because {p=127,a(7)^7=128, q=131};
n=10:a(10)=105 because {p=c-2,c=a(10)^10=162889462677744140625,q=c+2}
		

Crossrefs

Programs

  • Mathematica
    Table[fla=1;Do[If[((PrimeQ[s=n^k-3]&&PrimeQ[s1=n^k+1]) ||(PrimeQ[s=n^k-2]&&PrimeQ[s1=n^k+2])||(PrimeQ[s=n^k-1] &&PrimeQ[s1=n^k+3]))&&Equal[fla, 1]&&!Equal[n, 1], Print[{n, p, n^k, q, {k}}];fla=0], {n, 1, 1000000}], {k, 1, 60}]
  • PARI
    a(n) = {my(k=1); while (nextprime(k^n+1) - precprime(k^n-1) != 4, k++); k;} \\ Michel Marcus, Sep 03 2019
    
  • PARI
    f(k,r) = ispseudoprime(k-r) && ispseudoprime(k-r+4);
    a(n) = for(k=1, oo, my(t=k^n); if((f(t,1) || f(t,2) || f(t,3)) && nextprime(t+1)-precprime(t-1)==4, return(k))); \\ Daniel Suteu, Sep 03 2019

Extensions

a(2) corrected and a(45)-a(50) from Daniel Suteu, Sep 03 2019