A090182 Triangle T(n,k), 0 <= k <= n, composed of k-Catalan numbers.
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 3, 1, 1, 1, 14, 17, 4, 1, 1, 1, 42, 171, 43, 5, 1, 1, 1, 132, 3113, 1252, 89, 6, 1, 1, 1, 429, 106419, 104098, 5885, 161, 7, 1, 1, 1, 1430, 7035649, 25511272, 1518897, 20466, 265, 8, 1, 1, 1, 4862, 915028347, 18649337311, 1558435125, 12833546, 57799, 407, 9, 1, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 1, 1; 1, 2, 1, 1; 1, 5, 3, 1, 1; 1, 14, 17, 4, 1, 1; 1, 42, 171, 43, 5, 1, 1; 1, 132, 3113, 1252, 89, 6, 1, 1; 1, 429, 106419, 104098, 5885, 161, 7, 1, 1; 1, 1430, 7035649, 25511272, 1518897, 20466, 265, 8, 1, 1; This sequence formatted as a square array: 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 2, 5, 14, 42, 132, 429, ... 1, 1, 3, 17, 171, 3113, 106419, 7035649, ... 1, 1, 4, 43, 1252, 104098, 25511272, 18649337311, ... 1, 1, 5, 89, 5885, 1518897, 1558435125, 6386478643785, ... 1, 1, 6, 161, 20466, 12833546, 40130703276, 627122621447281, ...
Links
- Alois P. Heinz, Rows n = 0..55, flattened
- Lun Lv, Zhihong Liu, Some Identities Related to Restricted Lattice Paths, 2016 9th International Symposium on Computational Intelligence and Design (ISCID), pp. 338-340.
Crossrefs
Programs
-
Maple
T:= proc(n, k) option remember; `if`(k=n, 1, add( T(j+k, k)*T(n-j-1, k)*k^j, j=0..n-k-1)) end: seq(seq(T(n, k), k=0..n), n=0..12); # Alois P. Heinz, Aug 10 2017
-
Mathematica
nmax = 10; col[k_] := col[k] = Module[{A}, A[] = 0; Do[A[x] = Normal[1/(1 - x*A[k*x]) + O[x]^(nmax-k+1)], {nmax-k+1}]; CoefficientList[A[x], x]]; T[n_, k_] := col[k][[n-k+1]]; Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 05 2019, using g.f. given for column sequences *)