cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090285 Triangle T(n,k), 0<=k<=n, read by rows, defined by: T(n,k)=0 if k>n, T(n,0) = A000108(n); T(n+1,k)= Sum_{j=0..n} T(n-j,k-1)*binomial(2j+1,j+1).

Original entry on oeis.org

1, 1, 1, 2, 4, 1, 5, 15, 7, 1, 14, 56, 37, 10, 1, 42, 210, 176, 68, 13, 1, 132, 792, 794, 392, 108, 16, 1, 429, 3003, 3473, 2063, 731, 157, 19, 1, 1430, 11440, 14893, 10254, 4395, 1220, 215, 22, 1, 4862, 43758, 63004, 49024, 24465, 8249, 1886, 282, 25, 1
Offset: 0

Views

Author

Philippe Deléham, Jan 24 2004

Keywords

Comments

The matrix inverse starts
1;
-1, 1;
2, -4, 1;
-4, 13, -7, 1;
8, -38, 33, -10, 1;
-16, 104, -129, 62, -13, 1;
32, -272, 450, -304, 100, -16, 1;
-64, 688, -1452, 1289, -590, 147, -19, 1;
128, -1696, 4424, -4942, 2945, -1014, 203, -22, 1;
- R. J. Mathar, Mar 15 2013
Riordan array (c(x), x*c(x)^2/(1-x*c(x)^2)) where c(x) is the g.f. for the Catalan numbers (A000108). - Philippe Deléham, Jun 02 2013
The matrix inverse is the Riordan array ((1+x)/(1+2*x), x*(1+x)/(1+2*x)^2). - Philippe Deléham, Jan 26 2014

Crossrefs

See also A001700 for binomial(2n+1,n+1).

Programs

  • Maple
    A090285 := proc(n,k)
        if k < 0 or k > n then
            0 ;
        elif k = 0 then
            A000108(n)
        else
            add(procname(n-1-j,k-1)*binomial(2*j+1,j+1),j=0..n-1) ;
        end if;
    end proc: # R. J. Mathar, Mar 15 2013
  • Mathematica
    T[n_, k_] := T[n, k] = If[k == 0, CatalanNumber@ n, Sum[T[(n - 1) - j, k - 1] Binomial[2 j + 1, j + 1], {j, 0, n - 1}]]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Jun 26 2017 *)

Formula

T(n, 1) = n*A000108(n) = A001791(n) .
T(n, 2) = 2^(2n-1) - binomial(2n+1, n) + binomial(2n-1, n-1) = A006419(n).