Original entry on oeis.org
1, 2, 7, 28, 118, 510, 2235, 9876, 43870, 195556, 873814, 3911168, 17527904, 78622982, 352911939, 1584927828, 7120769526, 32002212252, 143859840114, 646819996008, 2908670252676, 13081556909292, 58839348572574, 264674150692488, 1190649451348908, 5356483791828840, 24098774900561500
Offset: 0
-
Table[SeriesCoefficient[(1-x^2*((1-Sqrt[1-4*x])/(2*x))^4)/(1-2*x*((1-Sqrt[1-4*x])/(2*x))^2),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
-
a(n):=if n=0 then 1 else 4*binomial(2*n-1,n)/(n+1)+3*sum(((k+1)*2^(k)*binomial(2*n-1,n-k-1))/(n+k+1),k,1,n-1); /* Vladimir Kruchinin, Feb 21 2019 */
-
x='x+O('x^66); Vec((1-x^2*((1-sqrt(1-4*x))/(2*x))^4)/(1-2*x*((1-sqrt(1-4*x))/(2*x))^2)) \\ Joerg Arndt, May 11 2013
A090294
a(n) = K_3(n) = Sum_{k>=0} A090285(3,k)*2^k*binomial(n,k). a(n) = (4*n^3+30*n^2+56*n+15)/3.
Original entry on oeis.org
5, 35, 93, 187, 325, 515, 765, 1083, 1477, 1955, 2525, 3195, 3973, 4867, 5885, 7035, 8325, 9763, 11357, 13115, 15045, 17155, 19453, 21947, 24645, 27555, 30685, 34043, 37637, 41475, 45565, 49915, 54533, 59427, 64605, 70075, 75845, 81923, 88317
Offset: 0
A090297
a(n) = K_5(n) = Sum_{k>=0} A090285(5,k)*2^k*binomial(n,k). a(n) = 2*(2*n^5+45*n^4+360*n^3+1215*n^2+1528*n+315)/15.
Original entry on oeis.org
42, 462, 1586, 3958, 8330, 15694, 27314, 44758, 69930, 105102, 152946, 216566, 299530, 405902, 540274, 707798, 914218, 1165902, 1469874, 1833846, 2266250, 2776270, 3373874, 4069846, 4875818, 5804302, 6868722, 8083446, 9463818
Offset: 0
-
[2*(2*n^5 + 45*n^4 + 360*n^3 + 1215*n^2 + 1528*n + 315)/15: n in [0..30]]; // Vincenzo Librandi, Sep 18 2012
-
Table[(2*(2*n^5 + 45*n^4 + 360*n^3 + 1215*n^2 + 1528*n + 315)/15),{n, 0, 50}] (* Vincenzo Librandi, Sep 18 2012 *)
LinearRecurrence[{6,-15,20,-15,6,-1},{42,462,1586,3958,8330,15694},30] (* Harvey P. Dale, Apr 17 2020 *)
A090296
a(n) = K_4(n) = Sum_{k>=0} A090285(4,k)*2^k*binomial(n,k). a(n) = 2*(n^4+14*n^3+62*n^2+91*n+21)/3.
Original entry on oeis.org
14, 126, 386, 874, 1686, 2934, 4746, 7266, 10654, 15086, 20754, 27866, 36646, 47334, 60186, 75474, 93486, 114526, 138914, 166986, 199094, 235606, 276906, 323394, 375486, 433614, 498226, 569786, 648774, 735686, 831034, 935346, 1049166
Offset: 0
A090299
Table T(n,k), n>=0 and k>=0, read by antidiagonals : the k-th column given by the k-th polynomial K_k related to A090285.
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 5, 10, 5, 1, 14, 35, 22, 7, 1, 42, 126, 93, 38, 9, 1, 132, 462, 386, 187, 58, 11, 1, 429, 1716, 1586, 874, 325, 82, 13, 1, 1430, 6435, 6476, 3958, 1686, 515, 110, 15, 1, 4862, 24310, 26333, 17548, 8330, 2934, 765, 142, 17, 1
Offset: 0
row n=0 : 1, 1, 2, 5, 14, 42, 132, 429, ... see A000108.
row n=1 : 1, 3, 10, 35, 126, 462, 1716, 6435, ... see A001700.
row n=2 : 1, 5, 22, 93, 386, 1586, 6476, ... see A000346.
row n=3 : 1, 7, 38, 187, 874, 3958, 17548, ... see A000531.
row n=4 : 1, 9, 58, 325, 1686, 8330, 39796, ... see A018218.
Other rows :
A029887,
A042941,
A045724,
A042985,
A045492. Columns :
A000012,
A005408. Row n is the convolution of the row (n-j) with
A000984,
A000302,
A002457,
A002697 (first term omitted),
A002802,
A038845,
A020918,
A038846,
A020920 for j=1, 2, ..9 respectively.
Corrected by Alford Arnold, Oct 18 2006
A090288
a(n) = 2*n^2 + 6*n + 2.
Original entry on oeis.org
2, 10, 22, 38, 58, 82, 110, 142, 178, 218, 262, 310, 362, 418, 478, 542, 610, 682, 758, 838, 922, 1010, 1102, 1198, 1298, 1402, 1510, 1622, 1738, 1858, 1982, 2110, 2242, 2378, 2518, 2662, 2810, 2962, 3118, 3278, 3442, 3610, 3782, 3958, 4138, 4322, 4510
Offset: 0
-
List([0..50], n-> 2*(1+3*n+n^2)); # G. C. Greubel, May 31 2019
-
[2*(1+3*n+n^2): n in [0..50]]; // G. C. Greubel, May 31 2019
-
Table[2*(n^2 +3*n +1), {n, 0, 50}] (* Vincenzo Librandi, Oct 10 2013 *)
LinearRecurrence[{3,-3,1},{2,10,22},50] (* Harvey P. Dale, May 04 2017 *)
-
a(n)=2*n^2+6*n+2 \\ Charles R Greathouse IV, Sep 24 2015
-
[2*(1+3*n+n^2) for n in (0..50)] # G. C. Greubel, May 31 2019
A236471
Riordan array ((1-x)/(1-2*x), x(1-x)/(1-2*x)^2).
Original entry on oeis.org
1, 1, 1, 2, 4, 1, 4, 13, 7, 1, 8, 38, 33, 10, 1, 16, 104, 129, 62, 13, 1, 32, 272, 450, 304, 100, 16, 1, 64, 688, 1452, 1289, 590, 147, 19, 1, 128, 1696, 4424, 4942, 2945, 1014, 203, 22, 1, 256, 4096, 12896, 17584, 13073, 5823, 1603, 268, 25, 1, 512, 9728
Offset: 0
Triangle begins:
1;
1, 1;
2, 4, 1;
4, 13, 7, 1;
8, 38, 33, 10, 1;
16, 104, 129, 62, 13, 1;
32, 272, 450, 304, 100, 16, 1;
64, 688, 1452, 1289, 590, 147, 19, 1;
-
CoefficientList[CoefficientList[Series[(2*x^2-3*x+1)/((x^2-x)*y +4*x^2 - 4*x+1), {x,0,20}, {y,0,20}], x], y]//Flatten (* G. C. Greubel, Apr 19 2018 *)
-
T(n,k):=sum(binomial(m+k,2*k)*binomial(n-1,n-m),m,0,n); /* Vladimir Kruchinin, Apr 21 2015 */
-
for(n=0,20, for(k=0,n, print1(sum(m=0, n, binomial(m+k,2*k)* binomial(n-1,n-m)), ", "))) \\ G. C. Greubel, Apr 19 2018
Showing 1-7 of 7 results.
Comments