A055998
a(n) = n*(n+5)/2.
Original entry on oeis.org
0, 3, 7, 12, 18, 25, 33, 42, 52, 63, 75, 88, 102, 117, 133, 150, 168, 187, 207, 228, 250, 273, 297, 322, 348, 375, 403, 432, 462, 493, 525, 558, 592, 627, 663, 700, 738, 777, 817, 858, 900, 943, 987, 1032, 1078, 1125, 1173, 1222, 1272
Offset: 0
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 193.
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- Karl Dilcher and Larry Ericksen, Polynomials and algebraic curves related to certain binary and b-ary overpartitions, arXiv:2405.12024 [math.CO], 2024. See p. 10.
- Milan Janjic, Two Enumerative Functions.
- Kival Ngaokrajang, Illustration from A000027 (contains errors).
- Linhui Shen, Duals of semisimple Poisson-Lie groups and cluster theory of moduli spaces of G-local systems, arXiv:2003.07901 [math.RT], 2020. See p. 8.
- Leo Tavares, Illustration: Truncated Point Triangles.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
a(n) =
A095660(n+1, 2): third column of (1, 3)-Pascal triangle.
Cf. other rows, columns and diagonals of
A000027 written as a table:
A034856,
A046691,
A052905,
A055999,
A155212,
A051936,
A056000,
A183897,
A056115,
A051938;
A000124,
A022856,
A152950,
A145018,
A077169,
A166136,
A167487,
A173036;
A059993,
A090288,
A054000,
A142463,
A056220,
A001105,
A001844,
A058331,
A051890,
A097080,
A093328,
A137882.
A059993
Pinwheel numbers: a(n) = 2*n^2 + 6*n + 1.
Original entry on oeis.org
1, 9, 21, 37, 57, 81, 109, 141, 177, 217, 261, 309, 361, 417, 477, 541, 609, 681, 757, 837, 921, 1009, 1101, 1197, 1297, 1401, 1509, 1621, 1737, 1857, 1981, 2109, 2241, 2377, 2517, 2661, 2809, 2961, 3117, 3277, 3441, 3609, 3781, 3957, 4137, 4321, 4509, 4701, 4897
Offset: 0
- M. Imran and S. Hayat, On computation of topological indices of Aztec diamonds, Sci. Int. (Lahore), Vol. 26(4), 2014, pp. 1407-1412. - Emeric Deutsch, Sep 23 2017
- Harry J. Smith, Table of n, a(n) for n = 0..1000
- Author?, figure. [Wayback Machine link]
- Ângela Mestre and José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
[2*n^2+6*n+1: n in [0..50]]; // Vincenzo Librandi, Mar 01 2013
-
I:=[1,9]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2)+4: n in [1..50]]; // Vincenzo Librandi, Mar 01 2013
-
Table[2 n^2 + 6 n + 1, {n, 0, 46}] (* Zerinvary Lajos, Jul 10 2009 *)
LinearRecurrence[{3,-3,1},{1,9,21},50] (* Harvey P. Dale, Oct 01 2018 *)
-
a(n) = { 2*n^2 + 6*n + 1 } \\ Harry J. Smith, Jul 01 2009
A185787
Sum of first k numbers in column k of the natural number array A000027; by antidiagonals.
Original entry on oeis.org
1, 7, 25, 62, 125, 221, 357, 540, 777, 1075, 1441, 1882, 2405, 3017, 3725, 4536, 5457, 6495, 7657, 8950, 10381, 11957, 13685, 15572, 17625, 19851, 22257, 24850, 27637, 30625, 33821, 37232, 40865, 44727, 48825, 53166, 57757, 62605, 67717, 73100, 78761, 84707, 90945, 97482, 104325, 111481, 118957, 126760, 134897, 143375
Offset: 1
-
[n*(7*n^2-6*n+5)/6: n in [1..50]]; // Vincenzo Librandi, Jul 04 2012
-
f[n_,k_]:=n+(n+k-2)(n+k-1)/2;
s[k_]:=Sum[f[n,k],{n,1,k}];
Factor[s[k]]
Table[s[k],{k,1,70}] (* A185787 *)
CoefficientList[Series[(3*x^2+3*x+1)/(1-x)^4,{x,0,50}],x] (* Vincenzo Librandi, Jul 04 2012 *)
A083487
Triangle read by rows: T(n,k) = 2*n*k + n + k (1 <= k <= n).
Original entry on oeis.org
4, 7, 12, 10, 17, 24, 13, 22, 31, 40, 16, 27, 38, 49, 60, 19, 32, 45, 58, 71, 84, 22, 37, 52, 67, 82, 97, 112, 25, 42, 59, 76, 93, 110, 127, 144, 28, 47, 66, 85, 104, 123, 142, 161, 180, 31, 52, 73, 94, 115, 136, 157, 178, 199, 220, 34, 57, 80, 103, 126, 149, 172, 195, 218, 241, 264
Offset: 1
Artemario Tadeu Medeiros da Silva (artemario(AT)uol.com.br), Jun 09 2003
Triangle begins:
4;
7, 12;
10, 17, 24;
13, 22, 31, 40;
16, 27, 38, 49, 60;
19, 32, 45, 58, 71, 84;
22, 37, 52, 67, 82, 97, 112;
25, 42, 59, 76, 93, 110, 127, 144;
28, 47, 66, 85, 104, 123, 142, 161, 180;
-
[(2*n*k + n + k): k in [1..n], n in [1..11]]; // Vincenzo Librandi, Jun 01 2014
-
T[n_,k_]:= 2 n k + n + k; Table[T[n, k], {n, 10}, {k, n}]//Flatten (* Vincenzo Librandi, Jun 01 2014 *)
-
def T(r, c): return 2*r*c + r + c
a = [T(r, c) for r in range(12) for c in range(1, r+1)]
print(a) # Michael S. Branicky, Sep 07 2022
-
flatten([[2*n*k +n +k for k in range(1,n+1)] for n in range(1,14)]) # G. C. Greubel, Oct 17 2023
A222182
Numbers m such that 2*m + 11 is a square.
Original entry on oeis.org
-5, -1, 7, 19, 35, 55, 79, 107, 139, 175, 215, 259, 307, 359, 415, 475, 539, 607, 679, 755, 835, 919, 1007, 1099, 1195, 1295, 1399, 1507, 1619, 1735, 1855, 1979, 2107, 2239, 2375, 2515, 2659, 2807, 2959, 3115, 3275, 3439, 3607, 3779, 3955, 4135, 4319, 4507, 4699
Offset: 1
After a(2), subsequence of
A168489.
-
[m: m in [-5..5000] | IsSquare(2*m+11)];
-
I:=[-5,-1,7]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]]; // Vincenzo Librandi, Mar 04 2013
-
Table[2 n^2 - 2 n - 5, {n, 50}]
-
makelist(coeff(taylor(-(5-14*x+5*x^2)/(1-x)^3, x, 0, n), x, n), n, 0, 50);
-
a(n)=2*n^2-2*n-5 \\ Charles R Greathouse IV, Jun 17 2017
A268581
a(n) = 2*n^2 + 8*n + 5.
Original entry on oeis.org
5, 15, 29, 47, 69, 95, 125, 159, 197, 239, 285, 335, 389, 447, 509, 575, 645, 719, 797, 879, 965, 1055, 1149, 1247, 1349, 1455, 1565, 1679, 1797, 1919, 2045, 2175, 2309, 2447, 2589, 2735, 2885, 3039, 3197, 3359, 3525, 3695, 3869, 4047, 4229, 4415, 4605
Offset: 0
Cf. numbers n such that 2*n + k is a perfect square:
A093328 (k=-6),
A097080 (k=-5), no sequence (k=-4),
A051890 (k=-3),
A058331 (k=-2),
A001844 (k=-1),
A001105 (k=0),
A046092 (k=1),
A056222 (k=2),
A142463 (k=3),
A054000 (k=4),
A090288 (k=5), this sequence (k=6),
A059993 (k=7),
A147973 (k=8),
A139570 (k=9), no sequence (k=10),
A222182 (k=11),
A152811 (k=12),
A181570 (k=13).
-
[2*n^2+8*n+5: n in [0..60]];
-
[n: n in [0..6000] | IsSquare(2*n+6)];
-
Table[2 n^2 + 8 n + 5, {n, 0, 50}] (* Vincenzo Librandi, Apr 13 2016 *)
LinearRecurrence[{3,-3,1},{5,15,29},50] (* Harvey P. Dale, Jan 18 2017 *)
-
lista(nn) = for(n=0, nn, print1(2*n^2+8*n+5, ", ")); \\ Altug Alkan, Apr 10 2016
-
[2*n^2 + 8*n + 5 for n in [0..46]] # Stefano Spezia, Aug 04 2021
Changed offset from 1 to 0, adapted formulas and programs by
Bruno Berselli, Apr 13 2016
A271625
a(n) = = 2*(n+1)^2 - 5.
Original entry on oeis.org
3, 13, 27, 45, 67, 93, 123, 157, 195, 237, 283, 333, 387, 445, 507, 573, 643, 717, 795, 877, 963, 1053, 1147, 1245, 1347, 1453, 1563, 1677, 1795, 1917, 2043, 2173, 2307, 2445, 2587, 2733, 2883, 3037, 3195, 3357, 3523, 3693, 3867, 4045, 4227, 4413, 4603, 4797, 4995, 5197, 5403, 5613, 5827
Offset: 1
Numbers h such that 2*h + k is a perfect square:
A294774 (k=-9),
A255843 (k=-8),
A271649 (k=-7),
A093328 (k=-6),
A097080 (k=-5),
A271624 (k=-4),
A051890 (k=-3),
A058331 (k=-2),
A001844 (k=-1),
A001105 (k=0),
A046092 (k=1),
A056222 (k=2),
A142463 (k=3),
A054000 (k=4),
A090288 (k=5),
A268581 (k=6),
A059993 (k=7), (-1)*
A147973 (k=8),
A139570 (k=9), this sequence (k=10),
A222182 (k=11),
A152811 (k=12),
A181510 (k=13),
A161532 (k=14), no sequence (k=15).
-
[ 2*n^2 + 4*n - 3: n in [1..60]];
-
[ n: n in [1..6000] | IsSquare(2*n+10)];
-
Table[2 n^2 + 4 n - 3, {n, 53}] (* Michael De Vlieger, Apr 11 2016 *)
LinearRecurrence[{3,-3,1},{3,13,27},60] (* Harvey P. Dale, Jun 08 2023 *)
2*Range[2,60]^2 -5 (* G. C. Greubel, Jan 21 2025 *)
-
x='x+O('x^99); Vec(x*(3+4*x-3*x^2)/(1-x)^3) \\ Altug Alkan, Apr 11 2016
-
def A271625(n): return 2*pow(n+1,2) - 5
print([A271625(n) for n in range(1,61)]) # G. C. Greubel, Jan 21 2025
A271624
a(n) = 2*n^2 - 4*n + 4.
Original entry on oeis.org
2, 4, 10, 20, 34, 52, 74, 100, 130, 164, 202, 244, 290, 340, 394, 452, 514, 580, 650, 724, 802, 884, 970, 1060, 1154, 1252, 1354, 1460, 1570, 1684, 1802, 1924, 2050, 2180, 2314, 2452, 2594, 2740, 2890, 3044, 3202, 3364, 3530, 3700, 3874, 4052, 4234, 4420, 4610, 4804, 5002, 5204, 5410, 5620
Offset: 1
a(1) = 2*1^2 - 4*1 + 4 = 2.
Cf.
A002522, numbers n such that 2*n + k is a perfect square: no sequence (k = -9),
A255843 (k = -8),
A271649 (k = -7),
A093328 (k = -6),
A097080 (k = -5), this sequence (k = -4),
A051890 (k = -3),
A058331 (k = -2),
A001844 (k = -1),
A001105 (k = 0),
A046092 (k = 1),
A056222 (k = 2),
A142463 (k = 3),
A054000 (k = 4),
A090288 (k = 5),
A268581 (k = 6),
A059993 (k = 7), (-1)*
A147973 (k = 8),
A139570 (k = 9),
A271625 (k = 10),
A222182 (k = 11),
A152811 (k = 12),
A181510 (k = 13),
A161532 (k = 14), no sequence (k = 15).
-
[ 2*n^2 - 4*n + 4: n in [1..60]];
-
[ n: n in [1..6000] | IsSquare(2*n-4)];
-
Table[2 n^2 - 4 n + 4, {n, 54}] (* Michael De Vlieger, Apr 11 2016 *)
LinearRecurrence[{3,-3,1},{2,4,10},60] (* Harvey P. Dale, Jul 18 2023 *)
-
x='x+O('x^99); Vec(2*x*(1-x+2*x^2)/(1-x)^3) \\ Altug Alkan, Apr 11 2016
-
a(n)=2*n^2-4*n+4 \\ Charles R Greathouse IV, Apr 11 2016
A245300
Triangle T(n,k) = (n+k)*(n+k+1)/2 + k, 0 <= k <= n, read by rows.
Original entry on oeis.org
0, 1, 4, 3, 7, 12, 6, 11, 17, 24, 10, 16, 23, 31, 40, 15, 22, 30, 39, 49, 60, 21, 29, 38, 48, 59, 71, 84, 28, 37, 47, 58, 70, 83, 97, 112, 36, 46, 57, 69, 82, 96, 111, 127, 144, 45, 56, 68, 81, 95, 110, 126, 143, 161, 180, 55, 67, 80, 94, 109, 125, 142, 160, 179, 199, 220
Offset: 0
First rows and their row sums (A245301):
0 0;
1, 4 5;
3, 7, 12 22;
6, 11, 17, 24 58;
10, 16, 23, 31, 40 120;
15, 22, 30, 39, 49, 60 215;
21, 29, 38, 48, 59, 71, 84 350;
28, 37, 47, 58, 70, 83, 97, 112 532;
36, 46, 57, 69, 82, 96, 111, 127, 144 768;
45, 56, 68, 81, 95, 110, 126, 143, 161, 180 1065;
55, 67, 80, 94, 109, 125, 142, 160, 179, 199, 220 1430;
66, 79, 93, 108, 124, 141, 159, 178, 198, 219, 241, 264 1870;
78, 92, 107, 123, 140, 158, 177, 197, 218, 240, 263, 287, 312 2392.
-
a245300 n k = (n + k) * (n + k + 1) `div` 2 + k
a245300_row n = map (a245300 n) [0..n]
a245300_tabl = map a245300_row [0..]
a245300_list = concat a245300_tabl
-
[k + Binomial(n+k+1,2): k in [0..n], n in [0..15]]; // G. C. Greubel, Apr 01 2021
-
Table[k + Binomial[n+k+1,2], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 01 2021 *)
-
flatten([[k + binomial(n+k+1,2) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Apr 01 2021
A271649
a(n) = 2*(n^2 - n + 2).
Original entry on oeis.org
4, 8, 16, 28, 44, 64, 88, 116, 148, 184, 224, 268, 316, 368, 424, 484, 548, 616, 688, 764, 844, 928, 1016, 1108, 1204, 1304, 1408, 1516, 1628, 1744, 1864, 1988, 2116, 2248, 2384, 2524, 2668, 2816, 2968, 3124, 3284, 3448, 3616, 3788, 3964, 4144, 4328, 4516, 4708, 4904, 5104, 5308, 5516
Offset: 1
a(1) = 2*(1^2 - 1 + 2) = 4.
Numbers h such that 2*h + k is a perfect square: no sequence (k=-9),
A255843 (k=-8), this sequence (k=-7),
A093328 (k=-6),
A097080 (k=-5),
A271624 (k=-4),
A051890 (k=-3),
A058331 (k=-2),
A001844 (k=-1),
A001105 (k=0),
A046092 (k=1),
A056222 (k=2),
A142463 (k=3),
A054000 (k=4),
A090288 (k=5),
A268581 (k=6),
A059993 (k=7), (-1)*
A147973 (k=8),
A139570 (k=9),
A271625 (k=10),
A222182 (k=11),
A152811 (k=12),
A181510 (k=13),
A161532 (k=14), no sequence (k=15).
-
[ 2*n^2 - 2*n + 4: n in [1..60]];
-
[ n: n in [1..6000] | IsSquare(2*n-7)];
-
A271649:=n->2*(n^2-n+2): seq(A271649(n), n=1..60); # Wesley Ivan Hurt, Aug 31 2016
-
Table[2 (n^2 - n + 2), {n, 53}] (* or *)
Select[Range@ 5516, IntegerQ@ Sqrt[2 # - 7] &] (* or *)
Table[SeriesCoefficient[(-4 (1 - x + x^2))/(-1 + x)^3, {x, 0, n}], {n, 0, 52}] (* Michael De Vlieger, Apr 11 2016 *)
LinearRecurrence[{3,-3,1},{4,8,16},60] (* Harvey P. Dale, Jun 14 2022 *)
-
a(n)=2*(n^2-n+2) \\ Charles R Greathouse IV, Jun 17 2017
Showing 1-10 of 21 results.
Comments