cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A055998 a(n) = n*(n+5)/2.

Original entry on oeis.org

0, 3, 7, 12, 18, 25, 33, 42, 52, 63, 75, 88, 102, 117, 133, 150, 168, 187, 207, 228, 250, 273, 297, 322, 348, 375, 403, 432, 462, 493, 525, 558, 592, 627, 663, 700, 738, 777, 817, 858, 900, 943, 987, 1032, 1078, 1125, 1173, 1222, 1272
Offset: 0

Views

Author

Barry E. Williams, Jun 14 2000

Keywords

Comments

If X is an n-set and Y a fixed (n-3)-subset of X then a(n-3) is equal to the number of 2-subsets of X intersecting Y. - Milan Janjic, Aug 15 2007
Bisection of A165157. - Jaroslav Krizek, Sep 05 2009
a(n) is the number of (w,x,y) having all terms in {0,...,n} and w=x+y-1. - Clark Kimberling, Jun 02 2012
Numbers m >= 0 such that 8m+25 is a square. - Bruce J. Nicholson, Jul 26 2017
a(n-1) = 3*(n-1) + (n-1)*(n-2)/2 is the number of connected, loopless, non-oriented, multi-edge vertex-labeled graphs with n edges and 3 vertices. Labeled multigraph analog of A253186. There are 3*(n-1) graphs with the 3 vertices on a chain (3 ways to label the middle graph, n-1 ways to pack edges on one of connections) and binomial(n-1,2) triangular graphs (one way to label the graphs, pack 1 or 2 or ...n-2 on the 1-2 edge, ...). - R. J. Mathar, Aug 10 2017
a(n) is also the number of vertices of the quiver for PGL_{n+1} (see Shen). - Stefano Spezia, Mar 24 2020
Starting from a(2) = 7, this is the 4th column of the array: natural numbers written by antidiagonals downwards. See the illustration by Kival Ngaokrajang and the cross-references. - Andrey Zabolotskiy, Dec 21 2021

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 193.

Crossrefs

a(n) = A095660(n+1, 2): third column of (1, 3)-Pascal triangle.
Row n=2 of A255961.

Programs

Formula

G.f.: x*(3-2*x)/(1-x)^3.
a(n) = A027379(n), n > 0.
a(n) = A126890(n,2) for n > 1. - Reinhard Zumkeller, Dec 30 2006
a(n) = A000217(n) + A005843(n). - Reinhard Zumkeller, Sep 24 2008
If we define f(n,i,m) = Sum_{k=0..n-i} binomial(n,k)*Stirling1(n-k,i)*Product_{j=0..k-1} (-m-j), then a(n) = -f(n,n-1,3), for n >= 1. - Milan Janjic, Dec 20 2008
a(n) = A167544(n+8). - Philippe Deléham, Nov 25 2009
a(n) = a(n-1) + n + 2 with a(0)=0. - Vincenzo Librandi, Aug 07 2010
a(n) = Sum_{k=1..n} (k+2). - Gary Detlefs, Aug 10 2010
a(n) = A034856(n+1) - 1 = A000217(n+2) - 3. - Jaroslav Krizek, Sep 05 2009
Sum_{n>=1} 1/a(n) = 137/150. - R. J. Mathar, Jul 14 2012
a(n) = 3*n + A000217(n-1) = 3*n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
a(n) = Sum_{i=3..n+2} i. - Wesley Ivan Hurt, Jun 28 2013
a(n) = 3*A000217(n) - 2*A000217(n-1). - Bruno Berselli, Dec 17 2014
a(n) = A046691(n) + 1. Also, a(n) = A052905(n-1) + 2 = A055999(n-1) + 3 for n>0. - Andrey Zabolotskiy, May 18 2016
E.g.f.: x*(6+x)*exp(x)/2. - G. C. Greubel, Apr 05 2019
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/5 - 47/150. - Amiram Eldar, Jan 10 2021
From Amiram Eldar, Feb 12 2024: (Start)
Product_{n>=1} (1 - 1/a(n)) = -5*cos(sqrt(33)*Pi/2)/(4*Pi).
Product_{n>=1} (1 + 1/a(n)) = 15*cos(sqrt(17)*Pi/2)/(2*Pi). (End)

A059993 Pinwheel numbers: a(n) = 2*n^2 + 6*n + 1.

Original entry on oeis.org

1, 9, 21, 37, 57, 81, 109, 141, 177, 217, 261, 309, 361, 417, 477, 541, 609, 681, 757, 837, 921, 1009, 1101, 1197, 1297, 1401, 1509, 1621, 1737, 1857, 1981, 2109, 2241, 2377, 2517, 2661, 2809, 2961, 3117, 3277, 3441, 3609, 3781, 3957, 4137, 4321, 4509, 4701, 4897
Offset: 0

Views

Author

Naohiro Nomoto, Mar 14 2001

Keywords

Comments

Nonnegative integers m such that 2*m + 7 is a square. - Vincenzo Librandi, Mar 01 2013
Numbers of the form 4*(h+1)*(2*h-1) + 1, where h = 0, -1, 1, -2, 2, -3, 3, -4, 4, ... . - Bruno Berselli, Feb 03 2017
a(n) is also the number of vertices of the Aztec diamond AZ(n) (see Lemma 2.1 of the Imran et al. paper). - Emeric Deutsch, Sep 23 2017

References

  • M. Imran and S. Hayat, On computation of topological indices of Aztec diamonds, Sci. Int. (Lahore), Vol. 26(4), 2014, pp. 1407-1412. - Emeric Deutsch, Sep 23 2017

Crossrefs

Cf. numbers n such that 2*n + 2*k + 1 is a square: A046092 (k=0), A142463 (k=1), A090288 (k=2), this sequence (k=3), A139570 (k=4), A222182 (k=5), A181510 (k=6).

Programs

  • Magma
    [2*n^2+6*n+1: n in [0..50]]; // Vincenzo Librandi, Mar 01 2013
    
  • Magma
    I:=[1,9]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2)+4: n in [1..50]]; // Vincenzo Librandi, Mar 01 2013
  • Mathematica
    Table[2 n^2 + 6 n + 1, {n, 0, 46}] (* Zerinvary Lajos, Jul 10 2009 *)
    LinearRecurrence[{3,-3,1},{1,9,21},50] (* Harvey P. Dale, Oct 01 2018 *)
  • PARI
    a(n) = { 2*n^2 + 6*n + 1 } \\ Harry J. Smith, Jul 01 2009
    

Formula

a(n) = 4*n + a(n-1) + 4 for n > 0, a(0)=1. - Vincenzo Librandi, Aug 07 2010
G.f.: (1 + 6*x - 3*x^2)/(1-x)^3. - Arkadiusz Wesolowski, Dec 24 2011
a(n) = 2*a(n-1) - a(n-2) + 4. - Vincenzo Librandi, Mar 01 2013
a(n) = Hyper2F1([-2, n], [1], -2). - Peter Luschny, Aug 02 2014
Sum_{n>=0} 1/a(n) = 1/3 + Pi*tan(sqrt(7)*Pi/2)/(2*sqrt(7)). - Amiram Eldar, Dec 13 2022
From Elmo R. Oliveira, Nov 16 2024: (Start)
E.g.f.: exp(x)*(1 + 8*x + 2*x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A185787 Sum of first k numbers in column k of the natural number array A000027; by antidiagonals.

Original entry on oeis.org

1, 7, 25, 62, 125, 221, 357, 540, 777, 1075, 1441, 1882, 2405, 3017, 3725, 4536, 5457, 6495, 7657, 8950, 10381, 11957, 13685, 15572, 17625, 19851, 22257, 24850, 27637, 30625, 33821, 37232, 40865, 44727, 48825, 53166, 57757, 62605, 67717, 73100, 78761, 84707, 90945, 97482, 104325, 111481, 118957, 126760, 134897, 143375
Offset: 1

Views

Author

Clark Kimberling, Feb 03 2011

Keywords

Comments

This is one of many interesting sequences and arrays that stem from the natural number array A000027, of which a northwest corner is as follows:
1....2.....4.....7...11...16...22...29...
3....5.....8....12...17...23...30...38...
6....9....13....18...24...31...39...48...
10...14...19....25...32...40...49...59...
15...20...26....33...41...50...60...71...
21...27...34....42...51...61...72...84...
28...35...43....52...62...73...85...98...
Blocking out all terms below the main diagonal leaves columns whose sums comprise A185787. Deleting the main diagonal and then summing give A185787. Analogous treatments to the left of the main diagonal give A100182 and A101165. Further sequences obtained directly from this array are easily obtained using the following formula for the array: T(n,k)=n+(n+k-2)(n+k-1)/2.
Examples:
row 1: A000124
row 2: A022856
row 3: A016028
row 4: A145018
row 5: A077169
col 1: A000217
col 2: A000096
col 3: A034856
col 4: A055998
col 5: A046691
col 6: A052905
col 7: A055999
diag. (1,5,...) ...... A001844
diag. (2,8,...) ...... A001105
diag. (4,12,...)...... A046092
diag. (7,17,...)...... A056220
diag. (11,23,...) .... A132209
diag. (16,30,...) .... A054000
diag. (22,38,...) .... A090288
diag. (3,9,...) ...... A058331
diag. (6,14,...) ..... A051890
diag. (10,20,...) .... A005893
diag. (15,27,...) .... A097080
diag. (21,35,...) .... A093328
antidiagonal sums: (1,5,15,34,...)=A006003=partial sums of A002817.
Let S(n,k) denote the n-th partial sum of column k. Then
S(n,k)=n*(n^2+3k*n+3*k^2-6*k+5)/6.
S(n,1)=n(n+1)(n+2)/6
S(n,2)=n(n+1)(n+5)/6
S(n,3)=n(n+2)(n+7)/6
S(n,4)=n(n^2+12n+29)/6
S(n,5)=n(n+5)(n+10)/6
S(n,6)=n(n+7)(n+11)/6
S(n,7)=n(n+10)(n+11)/6
Weight array of T: A144112
Accumulation array of T: A185506
Second rectangular sum array of T: A185507
Third rectangular sum array of T: A185508
Fourth rectangular sum array of T: A185509

Crossrefs

Programs

  • Magma
    [n*(7*n^2-6*n+5)/6: n in [1..50]]; // Vincenzo Librandi, Jul 04 2012
  • Mathematica
    f[n_,k_]:=n+(n+k-2)(n+k-1)/2;
    s[k_]:=Sum[f[n,k],{n,1,k}];
    Factor[s[k]]
    Table[s[k],{k,1,70}]  (* A185787 *)
    CoefficientList[Series[(3*x^2+3*x+1)/(1-x)^4,{x,0,50}],x] (* Vincenzo Librandi, Jul 04 2012 *)

Formula

a(n)=n*(7*n^2-6*n+5)/6.
G.f.: x*(3*x^2+3*x+1)/(1-x)^4. - Vincenzo Librandi, Jul 04 2012

Extensions

Edited by Clark Kimberling, Feb 25 2023

A083487 Triangle read by rows: T(n,k) = 2*n*k + n + k (1 <= k <= n).

Original entry on oeis.org

4, 7, 12, 10, 17, 24, 13, 22, 31, 40, 16, 27, 38, 49, 60, 19, 32, 45, 58, 71, 84, 22, 37, 52, 67, 82, 97, 112, 25, 42, 59, 76, 93, 110, 127, 144, 28, 47, 66, 85, 104, 123, 142, 161, 180, 31, 52, 73, 94, 115, 136, 157, 178, 199, 220, 34, 57, 80, 103, 126, 149, 172, 195, 218, 241, 264
Offset: 1

Views

Author

Artemario Tadeu Medeiros da Silva (artemario(AT)uol.com.br), Jun 09 2003

Keywords

Comments

T(n,k) gives number of edges (of unit length) in a k X n grid.
The values 2*T(n,k)+1 = (2*n+1)*(2*k+1) are nonprime and therefore in A047845.

Examples

			Triangle begins:
   4;
   7, 12;
  10, 17, 24;
  13, 22, 31, 40;
  16, 27, 38, 49,  60;
  19, 32, 45, 58,  71,  84;
  22, 37, 52, 67,  82,  97, 112;
  25, 42, 59, 76,  93, 110, 127, 144;
  28, 47, 66, 85, 104, 123, 142, 161, 180;
		

Crossrefs

Programs

  • Magma
    [(2*n*k + n + k): k in [1..n], n in [1..11]]; // Vincenzo Librandi, Jun 01 2014
    
  • Mathematica
    T[n_,k_]:= 2 n k + n + k; Table[T[n, k], {n, 10}, {k, n}]//Flatten (* Vincenzo Librandi, Jun 01 2014 *)
  • Python
    def T(r, c): return 2*r*c + r + c
    a = [T(r, c) for r in range(12) for c in range(1, r+1)]
    print(a) # Michael S. Branicky, Sep 07 2022
    
  • SageMath
    flatten([[2*n*k +n +k for k in range(1,n+1)] for n in range(1,14)]) # G. C. Greubel, Oct 17 2023

Formula

From G. C. Greubel, Oct 17 2023: (Start)
T(n, 1) = A016777(n).
T(n, 2) = A016873(n).
T(n, 3) = A017017(n).
T(n, 4) = A017209(n).
T(n, 5) = A017449(n).
T(n, 6) = A186113(n).
T(n, n-1) = A056220(n).
T(n, n-2) = A090288(n-2).
T(n, n-3) = A271625(n-2).
T(n, n) = 4*A000217(n).
T(2*n, n) = A033954(n).
Sum_{k=1..n} T(n, k) = A162254(n).
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = A182868((n+1)/2) if n is odd otherwise A182868(n/2) + 1. (End)

Extensions

Edited by N. J. A. Sloane, Jul 23 2009
Name edited by Michael S. Branicky, Sep 07 2022

A222182 Numbers m such that 2*m + 11 is a square.

Original entry on oeis.org

-5, -1, 7, 19, 35, 55, 79, 107, 139, 175, 215, 259, 307, 359, 415, 475, 539, 607, 679, 755, 835, 919, 1007, 1099, 1195, 1295, 1399, 1507, 1619, 1735, 1855, 1979, 2107, 2239, 2375, 2515, 2659, 2807, 2959, 3115, 3275, 3439, 3607, 3779, 3955, 4135, 4319, 4507, 4699
Offset: 1

Views

Author

Bruno Berselli, Mar 01 2013

Keywords

Comments

Except the first term, main diagonal of A155546. - Vincenzo Librandi, Mar 04 2013

Crossrefs

Cf. numbers n such that 2*n + 2*k + 1 is a square: A046092 (k=0), A142463 (k=1), A090288 (k=2), A059993 (k=3), A139570 (k=4), this sequence (k=5), A181510 (k=6).
Cf. A005408 (square roots of 2*a(n)+11), A155546.
After a(2), subsequence of A168489.

Programs

  • Magma
    [m: m in [-5..5000] | IsSquare(2*m+11)];
    
  • Magma
    I:=[-5,-1,7]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]]; // Vincenzo Librandi, Mar 04 2013
    
  • Mathematica
    Table[2 n^2 - 2 n - 5, {n, 50}]
  • Maxima
    makelist(coeff(taylor(-(5-14*x+5*x^2)/(1-x)^3, x, 0, n), x, n), n, 0, 50);
    
  • PARI
    a(n)=2*n^2-2*n-5 \\ Charles R Greathouse IV, Jun 17 2017

Formula

G.f.: -x*(5 - 14*x + 5*x^2)/(1-x)^3.
a(n) = a(-n+1) = 2*n^2 - 2*n - 5.
a(n) = A046092(n-1) - 5.
Sum_{n>=1} 1/a(n) = Pi*tan(sqrt(11)*Pi/2)/(2*sqrt(11)). - Amiram Eldar, Dec 23 2022
From Elmo R. Oliveira, Nov 17 2024: (Start)
E.g.f.: exp(x)*(2*x^2 - 5) + 5.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

A268581 a(n) = 2*n^2 + 8*n + 5.

Original entry on oeis.org

5, 15, 29, 47, 69, 95, 125, 159, 197, 239, 285, 335, 389, 447, 509, 575, 645, 719, 797, 879, 965, 1055, 1149, 1247, 1349, 1455, 1565, 1679, 1797, 1919, 2045, 2175, 2309, 2447, 2589, 2735, 2885, 3039, 3197, 3359, 3525, 3695, 3869, 4047, 4229, 4415, 4605
Offset: 0

Views

Author

Juri-Stepan Gerasimov, Apr 10 2016

Keywords

Comments

Also, numbers m such that 2*m + 6 is a square.
All the terms end with a digit in {5, 7, 9}, or equivalently, are congruent to {5, 7, 9} mod 10. - Stefano Spezia, Aug 05 2021

Crossrefs

Cf. numbers n such that 2*n + k is a perfect square: A093328 (k=-6), A097080 (k=-5), no sequence (k=-4), A051890 (k=-3), A058331 (k=-2), A001844 (k=-1), A001105 (k=0), A046092 (k=1), A056222 (k=2), A142463 (k=3), A054000 (k=4), A090288 (k=5), this sequence (k=6), A059993 (k=7), A147973 (k=8), A139570 (k=9), no sequence (k=10), A222182 (k=11), A152811 (k=12), A181570 (k=13).

Programs

  • Magma
    [2*n^2+8*n+5: n in [0..60]];
    
  • Magma
    [n: n in [0..6000] | IsSquare(2*n+6)];
    
  • Mathematica
    Table[2 n^2 + 8 n + 5, {n, 0, 50}] (* Vincenzo Librandi, Apr 13 2016 *)
    LinearRecurrence[{3,-3,1},{5,15,29},50] (* Harvey P. Dale, Jan 18 2017 *)
  • PARI
    lista(nn) = for(n=0, nn, print1(2*n^2+8*n+5, ", ")); \\ Altug Alkan, Apr 10 2016
    
  • Sage
    [2*n^2 + 8*n + 5 for n in [0..46]] # Stefano Spezia, Aug 04 2021

Formula

From Vincenzo Librandi, Apr 13 2016: (Start)
G.f.: (5-x^2)/(1-x)^3.
a(n) = 2*(n+2)^2 - 3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
E.g.f.: exp(x)*(5 + 10*x + 2*x^2). - Stefano Spezia, Aug 03 2021

Extensions

Changed offset from 1 to 0, adapted formulas and programs by Bruno Berselli, Apr 13 2016

A271625 a(n) = = 2*(n+1)^2 - 5.

Original entry on oeis.org

3, 13, 27, 45, 67, 93, 123, 157, 195, 237, 283, 333, 387, 445, 507, 573, 643, 717, 795, 877, 963, 1053, 1147, 1245, 1347, 1453, 1563, 1677, 1795, 1917, 2043, 2173, 2307, 2445, 2587, 2733, 2883, 3037, 3195, 3357, 3523, 3693, 3867, 4045, 4227, 4413, 4603, 4797, 4995, 5197, 5403, 5613, 5827
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 11 2016

Keywords

Comments

Numbers n such that 2*n + 10 is a perfect square.

Crossrefs

Numbers h such that 2*h + k is a perfect square: A294774 (k=-9), A255843 (k=-8), A271649 (k=-7), A093328 (k=-6), A097080 (k=-5), A271624 (k=-4), A051890 (k=-3), A058331 (k=-2), A001844 (k=-1), A001105 (k=0), A046092 (k=1), A056222 (k=2), A142463 (k=3), A054000 (k=4), A090288 (k=5), A268581 (k=6), A059993 (k=7), (-1)*A147973 (k=8), A139570 (k=9), this sequence (k=10), A222182 (k=11), A152811 (k=12), A181510 (k=13), A161532 (k=14), no sequence (k=15).

Programs

  • Magma
    [ 2*n^2 + 4*n - 3: n in [1..60]];
    
  • Magma
    [ n: n in [1..6000] | IsSquare(2*n+10)];
    
  • Mathematica
    Table[2 n^2 + 4 n - 3, {n, 53}] (* Michael De Vlieger, Apr 11 2016 *)
    LinearRecurrence[{3,-3,1},{3,13,27},60] (* Harvey P. Dale, Jun 08 2023 *)
    2*Range[2,60]^2 -5 (* G. C. Greubel, Jan 21 2025 *)
  • PARI
    x='x+O('x^99); Vec(x*(3+4*x-3*x^2)/(1-x)^3) \\ Altug Alkan, Apr 11 2016
    
  • Python
    def A271625(n): return 2*pow(n+1,2) - 5
    print([A271625(n) for n in range(1,61)]) # G. C. Greubel, Jan 21 2025

Formula

G.f.: x*(3 + 4*x - 3*x^2)/(1 - x)^3. - Ilya Gutkovskiy, Apr 11 2016
Sum_{n>=1} 1/a(n) = 13/30 - Pi*cot(sqrt(5/2)*Pi)/(2*sqrt(10)) = 0.5627678459924... . - Vaclav Kotesovec, Apr 11 2016
From Elmo R. Oliveira, Nov 17 2024: (Start)
E.g.f.: exp(x)*(2*x^2 + 6*x - 3) + 3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)
a(n) = 2*A000290(n+1) - 5. - G. C. Greubel, Jan 21 2025

Extensions

Name simplified by G. C. Greubel, Jan 21 2025

A271624 a(n) = 2*n^2 - 4*n + 4.

Original entry on oeis.org

2, 4, 10, 20, 34, 52, 74, 100, 130, 164, 202, 244, 290, 340, 394, 452, 514, 580, 650, 724, 802, 884, 970, 1060, 1154, 1252, 1354, 1460, 1570, 1684, 1802, 1924, 2050, 2180, 2314, 2452, 2594, 2740, 2890, 3044, 3202, 3364, 3530, 3700, 3874, 4052, 4234, 4420, 4610, 4804, 5002, 5204, 5410, 5620
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 11 2016

Keywords

Comments

Numbers n such that 2*n - 4 is a perfect square.
For n > 2, the number of square a(n)-gonal numbers is finite. - Muniru A Asiru, Oct 16 2016

Examples

			a(1) = 2*1^2 - 4*1 + 4 = 2.
		

Crossrefs

Cf. A002522, numbers n such that 2*n + k is a perfect square: no sequence (k = -9), A255843 (k = -8), A271649 (k = -7), A093328 (k = -6), A097080 (k = -5), this sequence (k = -4), A051890 (k = -3), A058331 (k = -2), A001844 (k = -1), A001105 (k = 0), A046092 (k = 1), A056222 (k = 2), A142463 (k = 3), A054000 (k = 4), A090288 (k = 5), A268581 (k = 6), A059993 (k = 7), (-1)*A147973 (k = 8), A139570 (k = 9), A271625 (k = 10), A222182 (k = 11), A152811 (k = 12), A181510 (k = 13), A161532 (k = 14), no sequence (k = 15).

Programs

  • Magma
    [ 2*n^2 - 4*n + 4: n in [1..60]];
    
  • Magma
    [ n: n in [1..6000] | IsSquare(2*n-4)];
    
  • Mathematica
    Table[2 n^2 - 4 n + 4, {n, 54}] (* Michael De Vlieger, Apr 11 2016 *)
    LinearRecurrence[{3,-3,1},{2,4,10},60] (* Harvey P. Dale, Jul 18 2023 *)
  • PARI
    x='x+O('x^99); Vec(2*x*(1-x+2*x^2)/(1-x)^3) \\ Altug Alkan, Apr 11 2016
    
  • PARI
    a(n)=2*n^2-4*n+4 \\ Charles R Greathouse IV, Apr 11 2016

Formula

a(n) = 2*A002522(n-1).
G.f.: 2*x*(1 - x + 2*x^2)/(1 - x)^3. - Ilya Gutkovskiy, Apr 11 2016
Sum_{n>=1} 1/a(n) = (1 + Pi*coth(Pi))/4 = 1.038337023734290587067... . - Vaclav Kotesovec, Apr 11 2016
a(n) = A005893(n-1), n > 1. - R. J. Mathar, Apr 12 2016
a(n) = 2 + 2*(n-1)^2. - Tyler Skywalker, Jul 21 2016
From Elmo R. Oliveira, Nov 17 2024: (Start)
E.g.f.: 2*(exp(x)*(x^2 - x + 2) - 2).
a(n) = 2*A160457(n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

A245300 Triangle T(n,k) = (n+k)*(n+k+1)/2 + k, 0 <= k <= n, read by rows.

Original entry on oeis.org

0, 1, 4, 3, 7, 12, 6, 11, 17, 24, 10, 16, 23, 31, 40, 15, 22, 30, 39, 49, 60, 21, 29, 38, 48, 59, 71, 84, 28, 37, 47, 58, 70, 83, 97, 112, 36, 46, 57, 69, 82, 96, 111, 127, 144, 45, 56, 68, 81, 95, 110, 126, 143, 161, 180, 55, 67, 80, 94, 109, 125, 142, 160, 179, 199, 220
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 17 2014

Keywords

Examples

			First rows and their row sums (A245301):
   0                                                                  0;
   1,  4                                                              5;
   3,  7,  12                                                        22;
   6, 11,  17,  24                                                   58;
  10, 16,  23,  31,  40                                             120;
  15, 22,  30,  39,  49,  60                                        215;
  21, 29,  38,  48,  59,  71,  84                                   350;
  28, 37,  47,  58,  70,  83,  97, 112                              532;
  36, 46,  57,  69,  82,  96, 111, 127, 144                         768;
  45, 56,  68,  81,  95, 110, 126, 143, 161, 180                   1065;
  55, 67,  80,  94, 109, 125, 142, 160, 179, 199, 220              1430;
  66, 79,  93, 108, 124, 141, 159, 178, 198, 219, 241, 264         1870;
  78, 92, 107, 123, 140, 158, 177, 197, 218, 240, 263, 287, 312    2392.
		

Crossrefs

Programs

  • Haskell
    a245300 n k = (n + k) * (n + k + 1) `div` 2 + k
    a245300_row n = map (a245300 n) [0..n]
    a245300_tabl = map a245300_row [0..]
    a245300_list = concat a245300_tabl
    
  • Magma
    [k + Binomial(n+k+1,2): k in [0..n], n in [0..15]]; // G. C. Greubel, Apr 01 2021
    
  • Mathematica
    Table[k + Binomial[n+k+1,2], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 01 2021 *)
  • Sage
    flatten([[k + binomial(n+k+1,2) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Apr 01 2021

Formula

T(n, 0) = A000217(n).
T(n, n) = A046092(n).
T(2*n, n) = A062725(n) (central terms).
Sum_{k=0..n} T(n, k) = A245301(n).
From G. C. Greubel, Apr 01 2021: (Start)
T(n, 1) = A000124(n+1) = A134869(n+1), n >= 1.
T(n, 2) = A152948(n+4), n >= 2.
T(n, 3) = A152950(n+4), n >= 3.
T(n, 4) = A145018(n+5), n >= 4.
T(n, 5) = A167499(n+4), n >= 5.
T(n, 6) = A166136(n+5), n >= 6.
T(n, 7) = A167487(n+6), n >= 7.
T(n, n-1) = A056220(n), n >= 1.
T(n, n-2) = A142463(n-1), n >= 2.
T(n, n-3) = A054000(n-1), n >= 3.
T(n, n-4) = A090288(n-3), n >= 4.
T(n, n-5) = A268581(n-4), n >= 5.
T(n, n-6) = A059993(n-4), n >= 6.
T(n, n-7) = (-1)*A147973(n), n >= 7.
T(n, n-8) = A139570(n-5), n >= 8.
T(n, n-9) = A271625(n-5), n >= 9.
T(n, n-10) = A222182(n-4), n >= 10.
T(2*n, n-1) = A081270(n-1), n >= 1.
T(2*n, n+1) = A117625(n+1), n >= 1. (End)

A271649 a(n) = 2*(n^2 - n + 2).

Original entry on oeis.org

4, 8, 16, 28, 44, 64, 88, 116, 148, 184, 224, 268, 316, 368, 424, 484, 548, 616, 688, 764, 844, 928, 1016, 1108, 1204, 1304, 1408, 1516, 1628, 1744, 1864, 1988, 2116, 2248, 2384, 2524, 2668, 2816, 2968, 3124, 3284, 3448, 3616, 3788, 3964, 4144, 4328, 4516, 4708, 4904, 5104, 5308, 5516
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 11 2016

Keywords

Comments

Numbers n such that 2*n - 7 is a perfect square.
Galois numbers for three-dimensional vector space, defined as the total number of subspaces in a three-dimensional vector space over GF(n-1), when n-1 is a power of a prime. - Artur Jasinski, Aug 31 2016, corrected by Robert Israel, Sep 23 2016

Examples

			a(1) = 2*(1^2 - 1 + 2) = 4.
		

Crossrefs

Numbers h such that 2*h + k is a perfect square: no sequence (k=-9), A255843 (k=-8), this sequence (k=-7), A093328 (k=-6), A097080 (k=-5), A271624 (k=-4), A051890 (k=-3), A058331 (k=-2), A001844 (k=-1), A001105 (k=0), A046092 (k=1), A056222 (k=2), A142463 (k=3), A054000 (k=4), A090288 (k=5), A268581 (k=6), A059993 (k=7), (-1)*A147973 (k=8), A139570 (k=9), A271625 (k=10), A222182 (k=11), A152811 (k=12), A181510 (k=13), A161532 (k=14), no sequence (k=15).

Programs

  • Magma
    [ 2*n^2 - 2*n + 4: n in [1..60]];
    
  • Magma
    [ n: n in [1..6000] | IsSquare(2*n-7)];
    
  • Maple
    A271649:=n->2*(n^2-n+2): seq(A271649(n), n=1..60); # Wesley Ivan Hurt, Aug 31 2016
  • Mathematica
    Table[2 (n^2 - n + 2), {n, 53}] (* or *)
    Select[Range@ 5516, IntegerQ@ Sqrt[2 # - 7] &] (* or *)
    Table[SeriesCoefficient[(-4 (1 - x + x^2))/(-1 + x)^3, {x, 0, n}], {n, 0, 52}] (* Michael De Vlieger, Apr 11 2016 *)
    LinearRecurrence[{3,-3,1},{4,8,16},60] (* Harvey P. Dale, Jun 14 2022 *)
  • PARI
    a(n)=2*(n^2-n+2) \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = 4*A000124(n).
a(n) = 2*A014206(n).
a(n) = A137882(n), n > 1. - R. J. Mathar, Apr 12 2016
Sum_{n>=1} 1/a(n) = tanh(sqrt(7)*Pi/2)*Pi/(2*sqrt(7)). - Amiram Eldar, Jul 30 2024
From Elmo R. Oliveira, Nov 18 2024: (Start)
G.f.: 4*x*(1 - x + x^2)/(1 - x)^3.
E.g.f.: 2*(exp(x)*(x^2 + 2) - 2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)
Showing 1-10 of 21 results. Next