cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A059993 Pinwheel numbers: a(n) = 2*n^2 + 6*n + 1.

Original entry on oeis.org

1, 9, 21, 37, 57, 81, 109, 141, 177, 217, 261, 309, 361, 417, 477, 541, 609, 681, 757, 837, 921, 1009, 1101, 1197, 1297, 1401, 1509, 1621, 1737, 1857, 1981, 2109, 2241, 2377, 2517, 2661, 2809, 2961, 3117, 3277, 3441, 3609, 3781, 3957, 4137, 4321, 4509, 4701, 4897
Offset: 0

Views

Author

Naohiro Nomoto, Mar 14 2001

Keywords

Comments

Nonnegative integers m such that 2*m + 7 is a square. - Vincenzo Librandi, Mar 01 2013
Numbers of the form 4*(h+1)*(2*h-1) + 1, where h = 0, -1, 1, -2, 2, -3, 3, -4, 4, ... . - Bruno Berselli, Feb 03 2017
a(n) is also the number of vertices of the Aztec diamond AZ(n) (see Lemma 2.1 of the Imran et al. paper). - Emeric Deutsch, Sep 23 2017

References

  • M. Imran and S. Hayat, On computation of topological indices of Aztec diamonds, Sci. Int. (Lahore), Vol. 26(4), 2014, pp. 1407-1412. - Emeric Deutsch, Sep 23 2017

Crossrefs

Cf. numbers n such that 2*n + 2*k + 1 is a square: A046092 (k=0), A142463 (k=1), A090288 (k=2), this sequence (k=3), A139570 (k=4), A222182 (k=5), A181510 (k=6).

Programs

  • Magma
    [2*n^2+6*n+1: n in [0..50]]; // Vincenzo Librandi, Mar 01 2013
    
  • Magma
    I:=[1,9]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2)+4: n in [1..50]]; // Vincenzo Librandi, Mar 01 2013
  • Mathematica
    Table[2 n^2 + 6 n + 1, {n, 0, 46}] (* Zerinvary Lajos, Jul 10 2009 *)
    LinearRecurrence[{3,-3,1},{1,9,21},50] (* Harvey P. Dale, Oct 01 2018 *)
  • PARI
    a(n) = { 2*n^2 + 6*n + 1 } \\ Harry J. Smith, Jul 01 2009
    

Formula

a(n) = 4*n + a(n-1) + 4 for n > 0, a(0)=1. - Vincenzo Librandi, Aug 07 2010
G.f.: (1 + 6*x - 3*x^2)/(1-x)^3. - Arkadiusz Wesolowski, Dec 24 2011
a(n) = 2*a(n-1) - a(n-2) + 4. - Vincenzo Librandi, Mar 01 2013
a(n) = Hyper2F1([-2, n], [1], -2). - Peter Luschny, Aug 02 2014
Sum_{n>=0} 1/a(n) = 1/3 + Pi*tan(sqrt(7)*Pi/2)/(2*sqrt(7)). - Amiram Eldar, Dec 13 2022
From Elmo R. Oliveira, Nov 16 2024: (Start)
E.g.f.: exp(x)*(1 + 8*x + 2*x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A268581 a(n) = 2*n^2 + 8*n + 5.

Original entry on oeis.org

5, 15, 29, 47, 69, 95, 125, 159, 197, 239, 285, 335, 389, 447, 509, 575, 645, 719, 797, 879, 965, 1055, 1149, 1247, 1349, 1455, 1565, 1679, 1797, 1919, 2045, 2175, 2309, 2447, 2589, 2735, 2885, 3039, 3197, 3359, 3525, 3695, 3869, 4047, 4229, 4415, 4605
Offset: 0

Views

Author

Juri-Stepan Gerasimov, Apr 10 2016

Keywords

Comments

Also, numbers m such that 2*m + 6 is a square.
All the terms end with a digit in {5, 7, 9}, or equivalently, are congruent to {5, 7, 9} mod 10. - Stefano Spezia, Aug 05 2021

Crossrefs

Cf. numbers n such that 2*n + k is a perfect square: A093328 (k=-6), A097080 (k=-5), no sequence (k=-4), A051890 (k=-3), A058331 (k=-2), A001844 (k=-1), A001105 (k=0), A046092 (k=1), A056222 (k=2), A142463 (k=3), A054000 (k=4), A090288 (k=5), this sequence (k=6), A059993 (k=7), A147973 (k=8), A139570 (k=9), no sequence (k=10), A222182 (k=11), A152811 (k=12), A181570 (k=13).

Programs

  • Magma
    [2*n^2+8*n+5: n in [0..60]];
    
  • Magma
    [n: n in [0..6000] | IsSquare(2*n+6)];
    
  • Mathematica
    Table[2 n^2 + 8 n + 5, {n, 0, 50}] (* Vincenzo Librandi, Apr 13 2016 *)
    LinearRecurrence[{3,-3,1},{5,15,29},50] (* Harvey P. Dale, Jan 18 2017 *)
  • PARI
    lista(nn) = for(n=0, nn, print1(2*n^2+8*n+5, ", ")); \\ Altug Alkan, Apr 10 2016
    
  • Sage
    [2*n^2 + 8*n + 5 for n in [0..46]] # Stefano Spezia, Aug 04 2021

Formula

From Vincenzo Librandi, Apr 13 2016: (Start)
G.f.: (5-x^2)/(1-x)^3.
a(n) = 2*(n+2)^2 - 3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
E.g.f.: exp(x)*(5 + 10*x + 2*x^2). - Stefano Spezia, Aug 03 2021

Extensions

Changed offset from 1 to 0, adapted formulas and programs by Bruno Berselli, Apr 13 2016

A271625 a(n) = = 2*(n+1)^2 - 5.

Original entry on oeis.org

3, 13, 27, 45, 67, 93, 123, 157, 195, 237, 283, 333, 387, 445, 507, 573, 643, 717, 795, 877, 963, 1053, 1147, 1245, 1347, 1453, 1563, 1677, 1795, 1917, 2043, 2173, 2307, 2445, 2587, 2733, 2883, 3037, 3195, 3357, 3523, 3693, 3867, 4045, 4227, 4413, 4603, 4797, 4995, 5197, 5403, 5613, 5827
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 11 2016

Keywords

Comments

Numbers n such that 2*n + 10 is a perfect square.

Crossrefs

Numbers h such that 2*h + k is a perfect square: A294774 (k=-9), A255843 (k=-8), A271649 (k=-7), A093328 (k=-6), A097080 (k=-5), A271624 (k=-4), A051890 (k=-3), A058331 (k=-2), A001844 (k=-1), A001105 (k=0), A046092 (k=1), A056222 (k=2), A142463 (k=3), A054000 (k=4), A090288 (k=5), A268581 (k=6), A059993 (k=7), (-1)*A147973 (k=8), A139570 (k=9), this sequence (k=10), A222182 (k=11), A152811 (k=12), A181510 (k=13), A161532 (k=14), no sequence (k=15).

Programs

  • Magma
    [ 2*n^2 + 4*n - 3: n in [1..60]];
    
  • Magma
    [ n: n in [1..6000] | IsSquare(2*n+10)];
    
  • Mathematica
    Table[2 n^2 + 4 n - 3, {n, 53}] (* Michael De Vlieger, Apr 11 2016 *)
    LinearRecurrence[{3,-3,1},{3,13,27},60] (* Harvey P. Dale, Jun 08 2023 *)
    2*Range[2,60]^2 -5 (* G. C. Greubel, Jan 21 2025 *)
  • PARI
    x='x+O('x^99); Vec(x*(3+4*x-3*x^2)/(1-x)^3) \\ Altug Alkan, Apr 11 2016
    
  • Python
    def A271625(n): return 2*pow(n+1,2) - 5
    print([A271625(n) for n in range(1,61)]) # G. C. Greubel, Jan 21 2025

Formula

G.f.: x*(3 + 4*x - 3*x^2)/(1 - x)^3. - Ilya Gutkovskiy, Apr 11 2016
Sum_{n>=1} 1/a(n) = 13/30 - Pi*cot(sqrt(5/2)*Pi)/(2*sqrt(10)) = 0.5627678459924... . - Vaclav Kotesovec, Apr 11 2016
From Elmo R. Oliveira, Nov 17 2024: (Start)
E.g.f.: exp(x)*(2*x^2 + 6*x - 3) + 3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)
a(n) = 2*A000290(n+1) - 5. - G. C. Greubel, Jan 21 2025

Extensions

Name simplified by G. C. Greubel, Jan 21 2025

A271624 a(n) = 2*n^2 - 4*n + 4.

Original entry on oeis.org

2, 4, 10, 20, 34, 52, 74, 100, 130, 164, 202, 244, 290, 340, 394, 452, 514, 580, 650, 724, 802, 884, 970, 1060, 1154, 1252, 1354, 1460, 1570, 1684, 1802, 1924, 2050, 2180, 2314, 2452, 2594, 2740, 2890, 3044, 3202, 3364, 3530, 3700, 3874, 4052, 4234, 4420, 4610, 4804, 5002, 5204, 5410, 5620
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 11 2016

Keywords

Comments

Numbers n such that 2*n - 4 is a perfect square.
For n > 2, the number of square a(n)-gonal numbers is finite. - Muniru A Asiru, Oct 16 2016

Examples

			a(1) = 2*1^2 - 4*1 + 4 = 2.
		

Crossrefs

Cf. A002522, numbers n such that 2*n + k is a perfect square: no sequence (k = -9), A255843 (k = -8), A271649 (k = -7), A093328 (k = -6), A097080 (k = -5), this sequence (k = -4), A051890 (k = -3), A058331 (k = -2), A001844 (k = -1), A001105 (k = 0), A046092 (k = 1), A056222 (k = 2), A142463 (k = 3), A054000 (k = 4), A090288 (k = 5), A268581 (k = 6), A059993 (k = 7), (-1)*A147973 (k = 8), A139570 (k = 9), A271625 (k = 10), A222182 (k = 11), A152811 (k = 12), A181510 (k = 13), A161532 (k = 14), no sequence (k = 15).

Programs

  • Magma
    [ 2*n^2 - 4*n + 4: n in [1..60]];
    
  • Magma
    [ n: n in [1..6000] | IsSquare(2*n-4)];
    
  • Mathematica
    Table[2 n^2 - 4 n + 4, {n, 54}] (* Michael De Vlieger, Apr 11 2016 *)
    LinearRecurrence[{3,-3,1},{2,4,10},60] (* Harvey P. Dale, Jul 18 2023 *)
  • PARI
    x='x+O('x^99); Vec(2*x*(1-x+2*x^2)/(1-x)^3) \\ Altug Alkan, Apr 11 2016
    
  • PARI
    a(n)=2*n^2-4*n+4 \\ Charles R Greathouse IV, Apr 11 2016

Formula

a(n) = 2*A002522(n-1).
G.f.: 2*x*(1 - x + 2*x^2)/(1 - x)^3. - Ilya Gutkovskiy, Apr 11 2016
Sum_{n>=1} 1/a(n) = (1 + Pi*coth(Pi))/4 = 1.038337023734290587067... . - Vaclav Kotesovec, Apr 11 2016
a(n) = A005893(n-1), n > 1. - R. J. Mathar, Apr 12 2016
a(n) = 2 + 2*(n-1)^2. - Tyler Skywalker, Jul 21 2016
From Elmo R. Oliveira, Nov 17 2024: (Start)
E.g.f.: 2*(exp(x)*(x^2 - x + 2) - 2).
a(n) = 2*A160457(n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

A245300 Triangle T(n,k) = (n+k)*(n+k+1)/2 + k, 0 <= k <= n, read by rows.

Original entry on oeis.org

0, 1, 4, 3, 7, 12, 6, 11, 17, 24, 10, 16, 23, 31, 40, 15, 22, 30, 39, 49, 60, 21, 29, 38, 48, 59, 71, 84, 28, 37, 47, 58, 70, 83, 97, 112, 36, 46, 57, 69, 82, 96, 111, 127, 144, 45, 56, 68, 81, 95, 110, 126, 143, 161, 180, 55, 67, 80, 94, 109, 125, 142, 160, 179, 199, 220
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 17 2014

Keywords

Examples

			First rows and their row sums (A245301):
   0                                                                  0;
   1,  4                                                              5;
   3,  7,  12                                                        22;
   6, 11,  17,  24                                                   58;
  10, 16,  23,  31,  40                                             120;
  15, 22,  30,  39,  49,  60                                        215;
  21, 29,  38,  48,  59,  71,  84                                   350;
  28, 37,  47,  58,  70,  83,  97, 112                              532;
  36, 46,  57,  69,  82,  96, 111, 127, 144                         768;
  45, 56,  68,  81,  95, 110, 126, 143, 161, 180                   1065;
  55, 67,  80,  94, 109, 125, 142, 160, 179, 199, 220              1430;
  66, 79,  93, 108, 124, 141, 159, 178, 198, 219, 241, 264         1870;
  78, 92, 107, 123, 140, 158, 177, 197, 218, 240, 263, 287, 312    2392.
		

Crossrefs

Programs

  • Haskell
    a245300 n k = (n + k) * (n + k + 1) `div` 2 + k
    a245300_row n = map (a245300 n) [0..n]
    a245300_tabl = map a245300_row [0..]
    a245300_list = concat a245300_tabl
    
  • Magma
    [k + Binomial(n+k+1,2): k in [0..n], n in [0..15]]; // G. C. Greubel, Apr 01 2021
    
  • Mathematica
    Table[k + Binomial[n+k+1,2], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 01 2021 *)
  • Sage
    flatten([[k + binomial(n+k+1,2) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Apr 01 2021

Formula

T(n, 0) = A000217(n).
T(n, n) = A046092(n).
T(2*n, n) = A062725(n) (central terms).
Sum_{k=0..n} T(n, k) = A245301(n).
From G. C. Greubel, Apr 01 2021: (Start)
T(n, 1) = A000124(n+1) = A134869(n+1), n >= 1.
T(n, 2) = A152948(n+4), n >= 2.
T(n, 3) = A152950(n+4), n >= 3.
T(n, 4) = A145018(n+5), n >= 4.
T(n, 5) = A167499(n+4), n >= 5.
T(n, 6) = A166136(n+5), n >= 6.
T(n, 7) = A167487(n+6), n >= 7.
T(n, n-1) = A056220(n), n >= 1.
T(n, n-2) = A142463(n-1), n >= 2.
T(n, n-3) = A054000(n-1), n >= 3.
T(n, n-4) = A090288(n-3), n >= 4.
T(n, n-5) = A268581(n-4), n >= 5.
T(n, n-6) = A059993(n-4), n >= 6.
T(n, n-7) = (-1)*A147973(n), n >= 7.
T(n, n-8) = A139570(n-5), n >= 8.
T(n, n-9) = A271625(n-5), n >= 9.
T(n, n-10) = A222182(n-4), n >= 10.
T(2*n, n-1) = A081270(n-1), n >= 1.
T(2*n, n+1) = A117625(n+1), n >= 1. (End)

A271649 a(n) = 2*(n^2 - n + 2).

Original entry on oeis.org

4, 8, 16, 28, 44, 64, 88, 116, 148, 184, 224, 268, 316, 368, 424, 484, 548, 616, 688, 764, 844, 928, 1016, 1108, 1204, 1304, 1408, 1516, 1628, 1744, 1864, 1988, 2116, 2248, 2384, 2524, 2668, 2816, 2968, 3124, 3284, 3448, 3616, 3788, 3964, 4144, 4328, 4516, 4708, 4904, 5104, 5308, 5516
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 11 2016

Keywords

Comments

Numbers n such that 2*n - 7 is a perfect square.
Galois numbers for three-dimensional vector space, defined as the total number of subspaces in a three-dimensional vector space over GF(n-1), when n-1 is a power of a prime. - Artur Jasinski, Aug 31 2016, corrected by Robert Israel, Sep 23 2016

Examples

			a(1) = 2*(1^2 - 1 + 2) = 4.
		

Crossrefs

Numbers h such that 2*h + k is a perfect square: no sequence (k=-9), A255843 (k=-8), this sequence (k=-7), A093328 (k=-6), A097080 (k=-5), A271624 (k=-4), A051890 (k=-3), A058331 (k=-2), A001844 (k=-1), A001105 (k=0), A046092 (k=1), A056222 (k=2), A142463 (k=3), A054000 (k=4), A090288 (k=5), A268581 (k=6), A059993 (k=7), (-1)*A147973 (k=8), A139570 (k=9), A271625 (k=10), A222182 (k=11), A152811 (k=12), A181510 (k=13), A161532 (k=14), no sequence (k=15).

Programs

  • Magma
    [ 2*n^2 - 2*n + 4: n in [1..60]];
    
  • Magma
    [ n: n in [1..6000] | IsSquare(2*n-7)];
    
  • Maple
    A271649:=n->2*(n^2-n+2): seq(A271649(n), n=1..60); # Wesley Ivan Hurt, Aug 31 2016
  • Mathematica
    Table[2 (n^2 - n + 2), {n, 53}] (* or *)
    Select[Range@ 5516, IntegerQ@ Sqrt[2 # - 7] &] (* or *)
    Table[SeriesCoefficient[(-4 (1 - x + x^2))/(-1 + x)^3, {x, 0, n}], {n, 0, 52}] (* Michael De Vlieger, Apr 11 2016 *)
    LinearRecurrence[{3,-3,1},{4,8,16},60] (* Harvey P. Dale, Jun 14 2022 *)
  • PARI
    a(n)=2*(n^2-n+2) \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = 4*A000124(n).
a(n) = 2*A014206(n).
a(n) = A137882(n), n > 1. - R. J. Mathar, Apr 12 2016
Sum_{n>=1} 1/a(n) = tanh(sqrt(7)*Pi/2)*Pi/(2*sqrt(7)). - Amiram Eldar, Jul 30 2024
From Elmo R. Oliveira, Nov 18 2024: (Start)
G.f.: 4*x*(1 - x + x^2)/(1 - x)^3.
E.g.f.: 2*(exp(x)*(x^2 + 2) - 2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

A294774 a(n) = 2*n^2 + 2*n + 5.

Original entry on oeis.org

5, 9, 17, 29, 45, 65, 89, 117, 149, 185, 225, 269, 317, 369, 425, 485, 549, 617, 689, 765, 845, 929, 1017, 1109, 1205, 1305, 1409, 1517, 1629, 1745, 1865, 1989, 2117, 2249, 2385, 2525, 2669, 2817, 2969, 3125, 3285, 3449, 3617, 3789, 3965, 4145, 4329, 4517, 4709, 4905
Offset: 0

Views

Author

Bruno Berselli, Nov 08 2017

Keywords

Comments

This is the case k = 9 of 2*n^2 + (1-(-1)^k)*n + (2*k-(-1)^k+1)/4 (similar sequences are listed in Crossrefs section). Note that:
2*( 2*n^2 + (1-(-1)^k)*n + (2*k-(-1)^k+1)/4 ) - k = ( 2*n + (1-(-1)^k)/2 )^2. From this follows an alternative definition for the sequence: Numbers h such that 2*h - 9 is a square. Therefore, if a(n) is a square then its base is a term of A075841.

Crossrefs

1st diagonal of A154631, 3rd diagonal of A055096, 4th diagonal of A070216.
Second column of Mathar's array in A016813 (Comments section).
Subsequence of A001481, A001983, A004766, A020668, A046711 and A057653 (because a(n) = (n+2)^2 + (n-1)^2); A097268 (because it is also a(n) = (n^2+n+3)^2 - (n^2+n+2)^2); A047270; A243182 (for y=1).
Similar sequences (see the first comment): A161532 (k=-14), A181510 (k=-13), A152811 (k=-12), A222182 (k=-11), A271625 (k=-10), A139570 (k=-9), (-1)*A147973 (k=-8), A059993 (k=-7), A268581 (k=-6), A090288 (k=-5), A054000 (k=-4), A142463 or A132209 (k=-3), A056220 (k=-2), A046092 (k=-1), A001105 (k=0), A001844 (k=1), A058331 (k=2), A051890 (k=3), A271624 (k=4), A097080 (k=5), A093328 (k=6), A271649 (k=7), A255843 (k=8), this sequence (k=9).

Programs

  • Maple
    seq(2*n^2 + 2*n + 5, n=0..100); # Robert Israel, Nov 10 2017
  • Mathematica
    Table[2n^2+2n+5,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{5,9,17},50] (* Harvey P. Dale, Sep 18 2023 *)
  • PARI
    Vec((5 - 6*x + 5*x^2) / (1 - x)^3 + O(x^50)) \\ Colin Barker, Nov 13 2017

Formula

O.g.f.: (5 - 6*x + 5*x^2)/(1 - x)^3.
E.g.f.: (5 + 4*x + 2*x^2)*exp(x).
a(n) = a(-1-n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 5*A000217(n+1) - 6*A000217(n) + 5*A000217(n-1).
n*a(n) - Sum_{j=0..n-1} a(j) = A002492(n) for n>0.
a(n) = Integral_{x=0..2n+4} |3-x| dx. - Pedro Caceres, Dec 29 2020
Showing 1-7 of 7 results.