A055998
a(n) = n*(n+5)/2.
Original entry on oeis.org
0, 3, 7, 12, 18, 25, 33, 42, 52, 63, 75, 88, 102, 117, 133, 150, 168, 187, 207, 228, 250, 273, 297, 322, 348, 375, 403, 432, 462, 493, 525, 558, 592, 627, 663, 700, 738, 777, 817, 858, 900, 943, 987, 1032, 1078, 1125, 1173, 1222, 1272
Offset: 0
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 193.
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- Karl Dilcher and Larry Ericksen, Polynomials and algebraic curves related to certain binary and b-ary overpartitions, arXiv:2405.12024 [math.CO], 2024. See p. 10.
- Milan Janjic, Two Enumerative Functions.
- Kival Ngaokrajang, Illustration from A000027 (contains errors).
- Linhui Shen, Duals of semisimple Poisson-Lie groups and cluster theory of moduli spaces of G-local systems, arXiv:2003.07901 [math.RT], 2020. See p. 8.
- Leo Tavares, Illustration: Truncated Point Triangles.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
a(n) =
A095660(n+1, 2): third column of (1, 3)-Pascal triangle.
Cf. other rows, columns and diagonals of
A000027 written as a table:
A034856,
A046691,
A052905,
A055999,
A155212,
A051936,
A056000,
A183897,
A056115,
A051938;
A000124,
A022856,
A152950,
A145018,
A077169,
A166136,
A167487,
A173036;
A059993,
A090288,
A054000,
A142463,
A056220,
A001105,
A001844,
A058331,
A051890,
A097080,
A093328,
A137882.
A053698
a(n) = n^3 + n^2 + n + 1.
Original entry on oeis.org
1, 4, 15, 40, 85, 156, 259, 400, 585, 820, 1111, 1464, 1885, 2380, 2955, 3616, 4369, 5220, 6175, 7240, 8421, 9724, 11155, 12720, 14425, 16276, 18279, 20440, 22765, 25260, 27931, 30784, 33825, 37060, 40495, 44136, 47989, 52060, 56355, 60880
Offset: 0
a(2) = 15 because 2^3 + 2^2 + 2 + 1 = 8 + 4 + 2 + 1 = 15.
a(3) = 40 because 3^3 + 3^2 + 3 + 1 = 27 + 9 + 3 + 1 = 40.
a(4) = 85 because 4^3 + 4^2 + 4 + 1 = 64 + 16 + 4 + 1 = 85.
From _Bruno Berselli_, Jan 02 2017: (Start)
The terms of the sequence are provided by the row sums of the following triangle (see the seventh formula in the previous section):
. 1;
. 3, 1;
. 9, 5, 1;
. 19, 13, 7, 1;
. 33, 25, 17, 9, 1;
. 51, 41, 31, 21, 11, 1;
. 73, 61, 49, 37, 25, 13, 1;
. 99, 85, 71, 57, 43, 29, 15, 1;
. 129, 113, 97, 81, 65, 49, 33, 17, 1;
. 163, 145, 127, 109, 91, 73, 55, 37, 19, 1;
. 201, 181, 161, 141, 121, 101, 81, 61, 41, 21, 1;
...
Columns from the first to the fifth, respectively: A058331, A001844, A056220 (after -1), A059993, A161532. Also, eighth column is A161549.
(End)
Cf.
A237627 (subset of semiprimes).
-
[n^3+n^2+n+1: n in [0..50]]; // Vincenzo Librandi, May 01 2011
-
A053698:=n->n^3 + n^2 + n + 1; seq(A053698(n), n=0..50); # Wesley Ivan Hurt, Apr 22 2014
-
Table[n^3 + n^2 + n + 1, {n, 0, 39}] (* Alonso del Arte, Apr 22 2014 *)
FromDigits["1111", Range[0, 50]] (* Paolo Xausa, May 11 2024 *)
-
Vec((1 + 5*x^2) / (1 - x)^4 + O(x^50)) \\ Colin Barker, Jan 02 2017
-
def a(n): return (n**3+n**2+n+1) # Torlach Rush, May 08 2024
A176549
Primes of the form 2*n^2+6*n+1.
Original entry on oeis.org
37, 109, 541, 757, 1009, 1297, 1621, 2377, 6841, 7561, 8317, 9109, 11701, 12637, 15661, 16741, 19009, 23977, 25309, 28081, 34057, 38917, 40609, 42337, 44101, 47737, 51517, 55441, 57457, 59509, 65881, 70309, 72577, 82009, 84457, 99901
Offset: 1
Cf. Primes of the form 2*n^2+2*(2*k+3)*n+(2*k+1): this sequence (k=0),
A154577 (k=2),
A154592 (k=3),
A154601 (k=4),
A217494 (k=7),
A217495 (k=10),
A217496 (k=11),
A217497 (k=12),
A217498 (k=13),
A217499 (k=16),
A217500 (k=17),
A217501 (k=18),
A217620 (k=19),
A217621 (k=21).
-
[a: n in [0..300] | IsPrime(a) where a is 2*n^2+6*n+1]; // Vincenzo Librandi, Jul 26 2012
-
Select[Table[2 n^2 + 6 n + 1, {n, 2000}], PrimeQ] (* Vincenzo Librandi, Jul 26 2012 *)
Removed an obviously incorrect part of the definition -
R. J. Mathar, Apr 21 2010
A222182
Numbers m such that 2*m + 11 is a square.
Original entry on oeis.org
-5, -1, 7, 19, 35, 55, 79, 107, 139, 175, 215, 259, 307, 359, 415, 475, 539, 607, 679, 755, 835, 919, 1007, 1099, 1195, 1295, 1399, 1507, 1619, 1735, 1855, 1979, 2107, 2239, 2375, 2515, 2659, 2807, 2959, 3115, 3275, 3439, 3607, 3779, 3955, 4135, 4319, 4507, 4699
Offset: 1
After a(2), subsequence of
A168489.
-
[m: m in [-5..5000] | IsSquare(2*m+11)];
-
I:=[-5,-1,7]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]]; // Vincenzo Librandi, Mar 04 2013
-
Table[2 n^2 - 2 n - 5, {n, 50}]
-
makelist(coeff(taylor(-(5-14*x+5*x^2)/(1-x)^3, x, 0, n), x, n), n, 0, 50);
-
a(n)=2*n^2-2*n-5 \\ Charles R Greathouse IV, Jun 17 2017
A268581
a(n) = 2*n^2 + 8*n + 5.
Original entry on oeis.org
5, 15, 29, 47, 69, 95, 125, 159, 197, 239, 285, 335, 389, 447, 509, 575, 645, 719, 797, 879, 965, 1055, 1149, 1247, 1349, 1455, 1565, 1679, 1797, 1919, 2045, 2175, 2309, 2447, 2589, 2735, 2885, 3039, 3197, 3359, 3525, 3695, 3869, 4047, 4229, 4415, 4605
Offset: 0
Cf. numbers n such that 2*n + k is a perfect square:
A093328 (k=-6),
A097080 (k=-5), no sequence (k=-4),
A051890 (k=-3),
A058331 (k=-2),
A001844 (k=-1),
A001105 (k=0),
A046092 (k=1),
A056222 (k=2),
A142463 (k=3),
A054000 (k=4),
A090288 (k=5), this sequence (k=6),
A059993 (k=7),
A147973 (k=8),
A139570 (k=9), no sequence (k=10),
A222182 (k=11),
A152811 (k=12),
A181570 (k=13).
-
[2*n^2+8*n+5: n in [0..60]];
-
[n: n in [0..6000] | IsSquare(2*n+6)];
-
Table[2 n^2 + 8 n + 5, {n, 0, 50}] (* Vincenzo Librandi, Apr 13 2016 *)
LinearRecurrence[{3,-3,1},{5,15,29},50] (* Harvey P. Dale, Jan 18 2017 *)
-
lista(nn) = for(n=0, nn, print1(2*n^2+8*n+5, ", ")); \\ Altug Alkan, Apr 10 2016
-
[2*n^2 + 8*n + 5 for n in [0..46]] # Stefano Spezia, Aug 04 2021
Changed offset from 1 to 0, adapted formulas and programs by
Bruno Berselli, Apr 13 2016
A271625
a(n) = = 2*(n+1)^2 - 5.
Original entry on oeis.org
3, 13, 27, 45, 67, 93, 123, 157, 195, 237, 283, 333, 387, 445, 507, 573, 643, 717, 795, 877, 963, 1053, 1147, 1245, 1347, 1453, 1563, 1677, 1795, 1917, 2043, 2173, 2307, 2445, 2587, 2733, 2883, 3037, 3195, 3357, 3523, 3693, 3867, 4045, 4227, 4413, 4603, 4797, 4995, 5197, 5403, 5613, 5827
Offset: 1
Numbers h such that 2*h + k is a perfect square:
A294774 (k=-9),
A255843 (k=-8),
A271649 (k=-7),
A093328 (k=-6),
A097080 (k=-5),
A271624 (k=-4),
A051890 (k=-3),
A058331 (k=-2),
A001844 (k=-1),
A001105 (k=0),
A046092 (k=1),
A056222 (k=2),
A142463 (k=3),
A054000 (k=4),
A090288 (k=5),
A268581 (k=6),
A059993 (k=7), (-1)*
A147973 (k=8),
A139570 (k=9), this sequence (k=10),
A222182 (k=11),
A152811 (k=12),
A181510 (k=13),
A161532 (k=14), no sequence (k=15).
-
[ 2*n^2 + 4*n - 3: n in [1..60]];
-
[ n: n in [1..6000] | IsSquare(2*n+10)];
-
Table[2 n^2 + 4 n - 3, {n, 53}] (* Michael De Vlieger, Apr 11 2016 *)
LinearRecurrence[{3,-3,1},{3,13,27},60] (* Harvey P. Dale, Jun 08 2023 *)
2*Range[2,60]^2 -5 (* G. C. Greubel, Jan 21 2025 *)
-
x='x+O('x^99); Vec(x*(3+4*x-3*x^2)/(1-x)^3) \\ Altug Alkan, Apr 11 2016
-
def A271625(n): return 2*pow(n+1,2) - 5
print([A271625(n) for n in range(1,61)]) # G. C. Greubel, Jan 21 2025
A271624
a(n) = 2*n^2 - 4*n + 4.
Original entry on oeis.org
2, 4, 10, 20, 34, 52, 74, 100, 130, 164, 202, 244, 290, 340, 394, 452, 514, 580, 650, 724, 802, 884, 970, 1060, 1154, 1252, 1354, 1460, 1570, 1684, 1802, 1924, 2050, 2180, 2314, 2452, 2594, 2740, 2890, 3044, 3202, 3364, 3530, 3700, 3874, 4052, 4234, 4420, 4610, 4804, 5002, 5204, 5410, 5620
Offset: 1
a(1) = 2*1^2 - 4*1 + 4 = 2.
Cf.
A002522, numbers n such that 2*n + k is a perfect square: no sequence (k = -9),
A255843 (k = -8),
A271649 (k = -7),
A093328 (k = -6),
A097080 (k = -5), this sequence (k = -4),
A051890 (k = -3),
A058331 (k = -2),
A001844 (k = -1),
A001105 (k = 0),
A046092 (k = 1),
A056222 (k = 2),
A142463 (k = 3),
A054000 (k = 4),
A090288 (k = 5),
A268581 (k = 6),
A059993 (k = 7), (-1)*
A147973 (k = 8),
A139570 (k = 9),
A271625 (k = 10),
A222182 (k = 11),
A152811 (k = 12),
A181510 (k = 13),
A161532 (k = 14), no sequence (k = 15).
-
[ 2*n^2 - 4*n + 4: n in [1..60]];
-
[ n: n in [1..6000] | IsSquare(2*n-4)];
-
Table[2 n^2 - 4 n + 4, {n, 54}] (* Michael De Vlieger, Apr 11 2016 *)
LinearRecurrence[{3,-3,1},{2,4,10},60] (* Harvey P. Dale, Jul 18 2023 *)
-
x='x+O('x^99); Vec(2*x*(1-x+2*x^2)/(1-x)^3) \\ Altug Alkan, Apr 11 2016
-
a(n)=2*n^2-4*n+4 \\ Charles R Greathouse IV, Apr 11 2016
A104858
Partial sums of the little Schroeder numbers (A001003).
Original entry on oeis.org
1, 2, 5, 16, 61, 258, 1161, 5440, 26233, 129282, 648141, 3294864, 16943733, 87983106, 460676625, 2429478144, 12893056497, 68802069506, 368961496469, 1987323655056, 10746633315501, 58321460916482, 317537398625945
Offset: 0
-
G:=(1+z-sqrt(1-6*z+z^2))/4/z/(1-z): Gser:=series(G,z=0,29): 1,seq(coeff(Gser,z^n),n=1..27);
-
CoefficientList[Series[(1+x-Sqrt[1-6*x+x^2])/4/x/(1-x), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 17 2012 *)
A245300
Triangle T(n,k) = (n+k)*(n+k+1)/2 + k, 0 <= k <= n, read by rows.
Original entry on oeis.org
0, 1, 4, 3, 7, 12, 6, 11, 17, 24, 10, 16, 23, 31, 40, 15, 22, 30, 39, 49, 60, 21, 29, 38, 48, 59, 71, 84, 28, 37, 47, 58, 70, 83, 97, 112, 36, 46, 57, 69, 82, 96, 111, 127, 144, 45, 56, 68, 81, 95, 110, 126, 143, 161, 180, 55, 67, 80, 94, 109, 125, 142, 160, 179, 199, 220
Offset: 0
First rows and their row sums (A245301):
0 0;
1, 4 5;
3, 7, 12 22;
6, 11, 17, 24 58;
10, 16, 23, 31, 40 120;
15, 22, 30, 39, 49, 60 215;
21, 29, 38, 48, 59, 71, 84 350;
28, 37, 47, 58, 70, 83, 97, 112 532;
36, 46, 57, 69, 82, 96, 111, 127, 144 768;
45, 56, 68, 81, 95, 110, 126, 143, 161, 180 1065;
55, 67, 80, 94, 109, 125, 142, 160, 179, 199, 220 1430;
66, 79, 93, 108, 124, 141, 159, 178, 198, 219, 241, 264 1870;
78, 92, 107, 123, 140, 158, 177, 197, 218, 240, 263, 287, 312 2392.
-
a245300 n k = (n + k) * (n + k + 1) `div` 2 + k
a245300_row n = map (a245300 n) [0..n]
a245300_tabl = map a245300_row [0..]
a245300_list = concat a245300_tabl
-
[k + Binomial(n+k+1,2): k in [0..n], n in [0..15]]; // G. C. Greubel, Apr 01 2021
-
Table[k + Binomial[n+k+1,2], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 01 2021 *)
-
flatten([[k + binomial(n+k+1,2) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Apr 01 2021
A271649
a(n) = 2*(n^2 - n + 2).
Original entry on oeis.org
4, 8, 16, 28, 44, 64, 88, 116, 148, 184, 224, 268, 316, 368, 424, 484, 548, 616, 688, 764, 844, 928, 1016, 1108, 1204, 1304, 1408, 1516, 1628, 1744, 1864, 1988, 2116, 2248, 2384, 2524, 2668, 2816, 2968, 3124, 3284, 3448, 3616, 3788, 3964, 4144, 4328, 4516, 4708, 4904, 5104, 5308, 5516
Offset: 1
a(1) = 2*(1^2 - 1 + 2) = 4.
Numbers h such that 2*h + k is a perfect square: no sequence (k=-9),
A255843 (k=-8), this sequence (k=-7),
A093328 (k=-6),
A097080 (k=-5),
A271624 (k=-4),
A051890 (k=-3),
A058331 (k=-2),
A001844 (k=-1),
A001105 (k=0),
A046092 (k=1),
A056222 (k=2),
A142463 (k=3),
A054000 (k=4),
A090288 (k=5),
A268581 (k=6),
A059993 (k=7), (-1)*
A147973 (k=8),
A139570 (k=9),
A271625 (k=10),
A222182 (k=11),
A152811 (k=12),
A181510 (k=13),
A161532 (k=14), no sequence (k=15).
-
[ 2*n^2 - 2*n + 4: n in [1..60]];
-
[ n: n in [1..6000] | IsSquare(2*n-7)];
-
A271649:=n->2*(n^2-n+2): seq(A271649(n), n=1..60); # Wesley Ivan Hurt, Aug 31 2016
-
Table[2 (n^2 - n + 2), {n, 53}] (* or *)
Select[Range@ 5516, IntegerQ@ Sqrt[2 # - 7] &] (* or *)
Table[SeriesCoefficient[(-4 (1 - x + x^2))/(-1 + x)^3, {x, 0, n}], {n, 0, 52}] (* Michael De Vlieger, Apr 11 2016 *)
LinearRecurrence[{3,-3,1},{4,8,16},60] (* Harvey P. Dale, Jun 14 2022 *)
-
a(n)=2*(n^2-n+2) \\ Charles R Greathouse IV, Jun 17 2017
Showing 1-10 of 20 results.
Comments